

Katana - Automatic CTF Challenge Solver

katana is a command-line utility that automates checking the “low-hanging fruit” in a CTF challenge. Written in Python, it is intended to help an individual do things they might otherwise forget to do.

A lot of the context and ideas for this tool come from the living document available at https://github.com/JohnHammond/ctf-katana

Contents:

	Installation Instructions
	Binary Dependencies

	Installing Katana

	External Unit Dependencies

	Getting Started
	Using the REPL

	Configuration

	Evaluating Targets

	Monitoring Directories

	CTFd Integration

	Converting Units
	Dependency Changes

	Groups

	Recursion Preferences

	Reporting Data

	Generating and Reporting Artifacts

	Module Reference
	Manager - Evaluation Manager

	Monitor - Target Results Callback

	Unit - Abstract Challenge Solution

	Target - Abstract Challenge Data

Units:

	katana.units.apk — Android Packages

	katana.units.crack — Hash Cracking

	katana.units.crypto — Cryptography

	katana.units.esoteric — Esoteric Languages

	katana.units.forensics — Forensics

	katana.units.gzip — GZIP files

	katana.units.ocr — Optical Character Recognition

	katana.units.pcap — Packet Capture Processing

	katana.units.pdf — PDF File Processing

	katana.units.raw — Miscellaneous general operations

	katana.units.stego — Steganography

	katana.units.tar — TAR File Processing

	katana.units.web — Web Application Testing

	katana.units.zip — ZIP File Processing

Indices and tables

	Index

	Module Index

	Search Page

Installation Instructions

Katana is designed first and foremost as a Python module. A setup.py script is provided to install via
setuptools. There are a number of binary dependencies which individual units depend on. When running Katana, you
will be notified of these dependencies if they are missing. A short list is provided below, but may not be up to date
depending on the units currently installed.

Binary Dependencies

Depending on your distribution, installation methods will differ. In general, you will require the following packages:

	Python3.7+

	Python3 setuptools

	Python3 pip

	Python3 virtualenv (for development)

	libffi-dev

	libssl-dev

	pandoc

	libgmp3-dev

	libzbar-dev

	tesseract-ocr

	xsel

	libpoppler-cpp-dev

	libmpc-dev

If you are using Ubuntu, these requirements can be installed with the following apt command:

sudo apt install -y python3.7-tk tk-dev python3.7 python3-pip python3-setuptools python3.7-dev \
 python3.7-venv libffi-dev libssl-dev pandoc libgmp3-dev libzbar-dev tesseract-ocr xsel \
 libpoppler-cpp-dev libmpc-dev

Installation on other distributions may differ (e.g. yum for CentOS, pacman for Arch, etc). Also, the names
of individual packages may differ. Consult your distribution package manager for locating these dependencies.

Installing Katana

To install both the Katana module and Read-Evaluate-Print-Loop (REPL) interpreter, use setup tools:

python setup.py install

This will install Katana and all of it’s Python dependencies in your current environment.

External Unit Dependencies

On your first few runs of Katana, you may find that you receive dependency errors related to binaries not present
on your system. These dependencies are specific to the units you have installed. The default units used by Katana have
the following system dependencies. Installation of these packages varies by package and distribution. Consult your
distribution documentation for further assistance in installing them.

	exiftool

	steghide

	stegsnow

	zsteg

	jsteg

	node

	binwalk

	foremost

	unzip

	npiet

	tcpflow

	git

	apktool

	tesseract

	qpdf

	pdfinfo

	pdfimages

	strings

Getting Started

Katana can be used in a number of different ways. It was designed first as a framework which is importable into other
projects, however it provides a built-in interface in the form of a REPL.

Using the REPL

The Katana REPL is available by simply running the Katana module or through the setuptools script:

Run as a python module
python -m katana ...
Or using the bundled setuptools script
katana ...

The REPL provides all the features of the Katana module plus some extras, and is implemented using the cmd2 Python
module. All commands are documented within the REPL itself, and the you can find the most up to date help by running
the help command from within the interpreter. At the time of writing, the following runtime arguments may be
supplied:

usage: katana [-h] [--config CONFIG] [--manager MANAGER] [--timeout TIMEOUT]
 [--auto] [--unit UNIT] [--exclude EXCLUDE] [--flag FLAG]
 [--force] [--apktool APKTOOL] [--md5 MD5] [--affine AFFINE]
 [--atbash ATBASH] [--caesar CAESAR] [--caesar255 CAESAR255]
 [--dna DNA] [--phonetic PHONETIC] [--polybius POLYBIUS]
 [--quipqiup QUIPQIUP] [--railfence RAILFENCE]
 [--reverse REVERSE] [--rot47 ROT47] [--rsa RSA] [--t9 T9]
 [--vigenere VIGENERE] [--xor XOR] [--brainfuck BRAINFUCK]
 [--cow COW] [--jsfuck JSFUCK] [--malbolge MALBOLGE] [--ook OOK]
 [--piet PIET] [--pikalang PIKALANG] [--binwalk BINWALK]
 [--foremost FOREMOST] [--gunzip GUNZIP] [--tesseract TESSERACT]
 [--tcpflow TCPFLOW] [--pdf2text PDF2TEXT] [--pdfcrack PDFCRACK]
 [--pdfimages PDFIMAGES] [--pdfinfo PDFINFO] [--ascii85 ASCII85]
 [--base32 BASE32] [--base58 BASE58] [--base64 BASE64]
 [--base85 BASE85] [--exiftool EXIFTOOL] [--morsecode MORSECODE]
 [--qrcode QRCODE] [--strings STRINGS] [--unbinary UNBINARY]
 [--undecimal UNDECIMAL] [--unhexlify UNHEXLIFY]
 [--urldecode URLDECODE] [--audio_spectrogram AUDIO_SPECTROGRAM]
 [--dtmf_decode DTMF_DECODE] [--jsteg JSTEG] [--snow SNOW]
 [--steghide STEGHIDE] [--stegsnow STEGSNOW]
 [--stegsolve STEGSOLVE] [--whitespace WHITESPACE]
 [--zsteg ZSTEG] [--extract EXTRACT]
 [--basic_img_shell BASIC_IMG_SHELL]
 [--basic_nosqli BASIC_NOSQLI] [--basic_sqli BASIC_SQLI]
 [--cookies COOKIES] [--form_submit FORM_SUBMIT] [--git GIT]
 [--logon_cookies LOGON_COOKIES] [--robots ROBOTS]
 [--spider SPIDER] [--unzip UNZIP]
 [targets [targets ...]]

Automatically identify and solve basic Capture the Flag challenges

positional arguments:
 targets targets to evaluate

optional arguments:
 -h, --help show this help message and exit
 --config CONFIG, -c CONFIG
 configuration file
 --manager MANAGER, -m MANAGER
 comma separated manager configurations (e.g. flag-
 format=FLAG{.*?})
 --timeout TIMEOUT, -t TIMEOUT
 timeout for all unit evaluations in seconds
 --auto, -a shorthand for `-m auto=True`
 --unit UNIT, -u UNIT explicitly run a unit on target
 --exclude EXCLUDE, -e EXCLUDE
 exclude a unit from running
 --flag FLAG, -f FLAG set the flag format
 --force Force execution even if results directory exists
 --apktool APKTOOL comma separated unit configuration
 --md5 MD5 comma separated unit configuration
 --affine AFFINE comma separated unit configuration
 --atbash ATBASH comma separated unit configuration
 --caesar CAESAR comma separated unit configuration
 --caesar255 CAESAR255
 comma separated unit configuration
 --dna DNA comma separated unit configuration
 --phonetic PHONETIC comma separated unit configuration
 --polybius POLYBIUS comma separated unit configuration
 --quipqiup QUIPQIUP comma separated unit configuration
 --railfence RAILFENCE
 comma separated unit configuration
 --reverse REVERSE comma separated unit configuration
 --rot47 ROT47 comma separated unit configuration
 --rsa RSA comma separated unit configuration
 --t9 T9 comma separated unit configuration
 --vigenere VIGENERE comma separated unit configuration
 --xor XOR comma separated unit configuration
 --brainfuck BRAINFUCK
 comma separated unit configuration
 --cow COW comma separated unit configuration
 --jsfuck JSFUCK comma separated unit configuration
 --malbolge MALBOLGE comma separated unit configuration
 --ook OOK comma separated unit configuration
 --piet PIET comma separated unit configuration
 --pikalang PIKALANG comma separated unit configuration
 --binwalk BINWALK comma separated unit configuration
 --foremost FOREMOST comma separated unit configuration
 --gunzip GUNZIP comma separated unit configuration
 --tesseract TESSERACT
 comma separated unit configuration
 --tcpflow TCPFLOW comma separated unit configuration
 --pdf2text PDF2TEXT comma separated unit configuration
 --pdfcrack PDFCRACK comma separated unit configuration
 --pdfimages PDFIMAGES
 comma separated unit configuration
 --pdfinfo PDFINFO comma separated unit configuration
 --ascii85 ASCII85 comma separated unit configuration
 --base32 BASE32 comma separated unit configuration
 --base58 BASE58 comma separated unit configuration
 --base64 BASE64 comma separated unit configuration
 --base85 BASE85 comma separated unit configuration
 --exiftool EXIFTOOL comma separated unit configuration
 --morsecode MORSECODE
 comma separated unit configuration
 --qrcode QRCODE comma separated unit configuration
 --strings STRINGS comma separated unit configuration
 --unbinary UNBINARY comma separated unit configuration
 --undecimal UNDECIMAL
 comma separated unit configuration
 --unhexlify UNHEXLIFY
 comma separated unit configuration
 --urldecode URLDECODE
 comma separated unit configuration
 --audio_spectrogram AUDIO_SPECTROGRAM
 comma separated unit configuration
 --dtmf_decode DTMF_DECODE
 comma separated unit configuration
 --jsteg JSTEG comma separated unit configuration
 --snow SNOW comma separated unit configuration
 --steghide STEGHIDE comma separated unit configuration
 --stegsnow STEGSNOW comma separated unit configuration
 --stegsolve STEGSOLVE
 comma separated unit configuration
 --whitespace WHITESPACE
 comma separated unit configuration
 --zsteg ZSTEG comma separated unit configuration
 --extract EXTRACT comma separated unit configuration
 --basic_img_shell BASIC_IMG_SHELL
 comma separated unit configuration
 --basic_nosqli BASIC_NOSQLI
 comma separated unit configuration
 --basic_sqli BASIC_SQLI
 comma separated unit configuration
 --cookies COOKIES comma separated unit configuration
 --form_submit FORM_SUBMIT
 comma separated unit configuration
 --git GIT comma separated unit configuration
 --logon_cookies LOGON_COOKIES
 comma separated unit configuration
 --robots ROBOTS comma separated unit configuration
 --spider SPIDER comma separated unit configuration
 --unzip UNZIP comma separated unit configuration

Configuration

Configuration parameters can either be set in an .ini file or at runtime via the set command.
Configuration files are parsed using the built-in Python configparser module. The most important section is the
manager section, which defines a few key parameters:

[manager]
Flag format REGEX
flag-format=FLAG{.*?}
Output directory
outdir=./results

Other parameters can be seen by running set manager at the katana prompt to receive a listing of the values currently
set at runtime. When using the set command, parameters are specified with their fully qualified section/parameter
name like so:

set manager[flag-format] NEWFLAG{.*?}

If the section name is not specified, a default value is added which will be used for any subsequent sections which
request that value. This is particularly useful for a configuration such as dict, which can be specified once and
will then apply to all units which require a dictionary like so:

set dict /path/to/rockyou.txt

You can also override the dictionary of a specific unit by specifying the unit as the section name:

set steghide[dict] /path/to/different/dict.txt

Evaluating Targets

The target command is used to view, start, and stop target evaluation. The target add sub-command will queue a
target to begin analysis. The target specified can be a path name, URL, or raw data. Katana will create an abstract
Target object and deduce the type of data passed to in intelligently:

katana - waiting - 0 units queued
➜ target add --help
Usage: target add [-h] target [...]

positional arguments:
 target the target to evaluate

optional arguments:
 -h, --help show this help message and exit

katana - waiting - 0 units queued
➜ target add ./tests/cases/orchestra
[+] ./tests/cases/orchestra: queuing target

After adding a target, you can view the progress of all targets with the target list command:

katana - waiting - 0 units queued
➜ target list --help
Usage: __main__.py list [-h] [--completed] [--running] [--all] [--flags]

optional arguments:
 -h, --help show this help message and exit
 --completed, -c Display only completed targets
 --running, -r Display only running targets
 --all, -a Display all targets (running/completed)
 --flags, -f D`

➜ katana - running - 0 units queued
➜ target list

./tests/cases/orchestra - completed
 hash: 2f0a02add67b58de837c7be054ae9e77
 flag: JHDCTF{strings}

When a target locates a flag, it will produce an asynchronous message to the screen identifying the unit and the flag
which was found. The flag will also be copied to the primary clipboard:

katana - waiting - 0 units queued
➜ target ad
strings(./tests/cases/orchestra) - completed!
 JHDCTF{strings} - (copied)
katana - running - 0 units queued
➜ target ad

After a target has located flag(s), you can view the solution path for a target using the target solution command:

katana - waiting - 0 units queued
➜ target solution -r ./tests/cases/evil_ducky.jpg
steghide(./tests/cases/evil_ducky.jpg) ➜
 strings(./results/60959e0ca0e4a202fd928c50f49a34fb/steghide/dGlua2Vy) ➜
 JHDCTF{we_finally_found_the_the_flag} - (copied)

Monitoring Directories

The Katana REPL has the ability to utilize the watchdog Python module to monitor a directory or list of directories
for new files and queue them for evaluation automatically. The allows you to start a Katana for a CTF, and then simply
download interesting targets to a directory, checking periodically for flags or hung targets. The monitor command
can be used to add, remove, and list monitored directories:

katana - waiting - 0 units queued
➜ monitor --help
Usage: monitor [-h] {list, ls, l, remove, rm, r, add, a} ...

Begin monitoring the given directory and automatically queue new targets as they are created.

optional arguments:
 -h, --help show this help message and exit

subcommands:
 {list, ls, l, remove, rm, r, add, a}
 Actions
 list
 remove (rm, r) remove a monitored directory
 add (a) begin monitoring a new directory

CTFd Integration

The Katana REPL has support to integrate with CTFd platforms. This integration includes the following:

	List challenges

	View challenge details (including solve state)

	Queue challenge (attached files and/or description)

	Automatically submit flags

This functionality is exposed through the ctfd command. All ctfd functions depend on a new configuration section
named ctfd:

[ctfd]
url=http://ctfd.yourdomain.com
username=YourUserName
password=YourPassword

After you specify these configuration items, you can use the ctfd list command to list available challenges. The list
is ordered from lowest-to-highest value, with solved challenges placed at the bottom. If your terminal supports
extended escape sequences, solved challenges will be “dim” and struck-through:

katana - waiting - 0 units queued
➜ set ctfd
[ctfd]
url = http://192.168.1.37:8000
username = User01
password = password

katana - waiting - 0 units queued
➜ ctfd list
ID Title Points
1 Orchestra 25

The ctfd show command will show the details of a given challenge ID:

katana - waiting - 0 units queued
➜ ctfd show 1
Orchestra - 25 points - solved

 It's music to my ears!

 Files:
 - orchestra

To queue a challenge for evaluation, you can use the ctfd queue command. By default, this command only queues attached
files. To also queue the description of the challenge for evaluation, use the --description/-d flag. It will also
check that the given challenge is not already solved (although this can be bypassed with the --force flag):

katana - waiting - 0 units queued
➜ ctfd queue --force 1
[+] ctfd: queuing http://192.168.1.37:8000/files/f36fce4574bed199beb8170ac5b9bc1e/orchestra?token=eyJ0ZWFtX2lkIjpudWxsLCJ1c2VyX2lkIjozLCJmaWxlX2lkIjoxfQ.Xbd3yA.cKg9KcdqjStAQNAtHY5LP_m5uCw

strings(http://192.168.1.37:8000/files/f36fce4574bed199beb8170ac5b9bc...) - completed!
 JHDCTF{there_is_no_orchestra_without_the_strings} - (copied)

[+] ctfd: correct flag for challenge 1

In this case, automatic flag submission was turned on, and the flag was automatically submitted upon completion to CTFd.
The updated solved state will be visible immediately in both ctfd list and ctfd show.

Converting Units

When rewriting the Katana framework, a lot of changes were made to the katana.unit.Unit interface. We tried
to keep the changes to a minimum, however some changes were inevitable. This should guide you through the changes
in order to either write a new unit or convert an old one.

While most of the interface remains unchanged, a few new features were added. Specifically, the
katana.manager.Manager class now takes the place of the old Katana object. katana.target.Target
has largely been unchanged from the previous version.

Dependency Changes

All properties of a Unit are now contained within the class. The DEPENDENCIES variable is now a property,
however it functions in the same capacity. The dependency mechanism can now be overridden through the
katana.unit.Unit.check_deps() method, however this is almost never needed.

Groups

Units are now parts of groups which allow you to arbitrarily group units into logical sections. By default
all converted units should be added to a group in conjunction with their package (e.g. “stego” or “crypto”).
This allows old functionality like excluding those groups to remain. These group names can be specified
when interfacing with the katana.unit.Finder class and therefore also with the Manager’s units
and exclude options. Those options can all either take a unit name or one of it’s groups.

Recursion Preferences

The old PROTECTED_RECURSE and RECURSE properties have been changed and a new recursion protection
mechanism is now in place. To modify recursion rules, you can now use the katana.unit.Unit.RECURSE_SELF,
katana.unit.Unit.NO_RECURSE and katana.unit.Unit.BLOCKED_GROUPS.

BLOCKED_GROUPS allows you to outlaw recursion into entire groups of units. For example, you may outlaw
recursion into any unit which is in the crypto group to prevent excessive recursion.

Reporting Data

The old data reporting mechanisms were part of the Katana class. In the new framework, these were moved to
the katana.manager.Manager class and are all named as register_*. For example, to register
arbitrary data as a result of this unit, you would call:

data = {"Wow": "This is really cool. FLAG{flag}"}
self.manager.register_data(self, data)

The manager will iterate through your data, and look for flags. It will also report the data to the
katana.monitor.Monitor.

Generating and Reporting Artifacts

Artifact creation used to be handled by the Katana class, but has been moved to katana.unit.Unit.
However, the interface is largely the same for creating an artifact. To create an artifact, use the
katana.unit.Unit.generate_artifact() method. The interface and parameters are the same as the old
katana.generate_artifact method. The biggest difference is that the artifact will not automatically be
registered with the Manager or reported to the Monitor. To do that, call katana.manager.Manager.register_artifact().
As an example, if you have some data you think is a file:

data = b"Something that's probably a file!"
name, stream = self.generate_artifact("interesting", create=True)
stream.write(data)
stream.close()
self.manager.register_artifact(self, name)

Module Reference

	Manager - Evaluation Manager

	Monitor - Target Results Callback

	Unit - Abstract Challenge Solution

	Target - Abstract Challenge Data

Manager - Evaluation Manager

A katana manager which is capable managing the evaluation of arbitrary
units against an arbitrary number of Targets of varying types in a
multithreaded manner and reporting results to a Monitor object

	
class katana.manager.Manager(monitor: katana.monitor.Monitor = None, config_path=None, default_units=True)

	Class to manage the threaded evaluation of applicable units against
arbitrary targets. Facilitates work queue management and recursion within
given units. It will also manage output file creation (such as artifacts).

Monitor - Target Results Callback

	
class katana.monitor.Monitor

	A monitor object recieves notifications from units whenever data,
artifacts or flags are found while processing a target. The default monitor
simply saves all artifacts to the artifact directory, and recurses on all
data. It will also print flags to the console via it’s logger.

	
on_artifact(manager: katana.manager.Manager, unit: katana.unit.Unit, path: str = None) → None

	Notify the monitor that an artifact was found and may be of
interest to store in a file. This may be a temporary file already open
(which will be lost after the unit ends) or some data which appears
to be a file. By default, this file is saved under the outdir
directory of the Manager. The return value indicates whether a new
target should be queued for recursion with this artifact as an upstream

	
on_completion(manager: katana.manager.Manager, timed_out: bool) → None

	This is called upon completion of evaluation (after manager.join()
is complete). timed_out indicates if we reached a timeout.

	
on_data(manager: katana.manager.Manager, unit: katana.unit.Unit, data: Any) → None

	Notify the monitor of arbitrary data returned by a unit. The data
could be of any type, but is likely bytes and should never be str
(for complient units). The return value should indicate whether the
given data should be recursed on (or re-evaluated for further unit
processing). By default, all data is recursed on

	
on_depth_limit(manager: katana.manager.Manager, target: katana.target.Target, unit: katana.unit.Unit) → None

	This means we reached the manager[‘manager’][‘max-depth’] limit
during recursion.

	
on_download_update(manager: katana.manager.Manager, download: katana.manager.Download) → None

	Called at most once per second while downloading files for targets

	
on_exception(manager: katana.manager.Manager, unit: katana.unit.Unit, exc: Exception) → None

	Notify the monitor that an exception occurred while processing a
given unit. The exception is passed as the exc parameter

	
on_flag(manager: katana.manager.Manager, unit: katana.unit.Unit, flag: str) → None

	Notify the monitor that a flag was found

	
on_manager_exception(manager: katana.manager.Manager, exc: Exception) → None

	Called when the manager catches an exception. By default, we do nothing.
This is most likely a KeyboardInterrupt or some other signal that was sent to
the main thread.

	
on_work(manager: katana.manager.Manager, threadid: int, unit: katana.unit.Unit, case: Any)

	Keep track of the thread statuses for asynchronous status updates

	
class katana.monitor.LoggingMonitor(*args, **kwargs)

	
	
on_artifact(manager: katana.manager.Manager, unit: katana.unit.Unit, path: str = None) → None

	Log a new artifact

	
on_exception(manager: katana.manager.Manager, unit: katana.unit.Unit, exception: Exception) → None

	Notify the monitor that an exception occurred while processing a
given unit. The exception is passed as the exc parameter

	
on_flag(manager: katana.manager.Manager, unit: katana.unit.Unit, flag: str)

	Log the solution chain of units which resulted in the given flag

	
class katana.monitor.JsonMonitor

	
	
on_completion(manager: katana.manager.Manager, timed_out: bool) → None

	This is called upon completion of evaluation (after manager.join()
is complete). timed_out indicates if we reached a timeout.

Unit - Abstract Challenge Solution

Units are the part of Katana which actually performs the evaluation on a given target. They are defined as
subclasses of the katana.unit.Unit class, and must implement three methods at a minimum to begin functioning.

Units are automatically loaded from the katana/units directory, and optionally other directories specified at
runtime by the Finder object below. This object is created by the Manager, and will search a directory for valid
unit objects.

You can also register unit classes manually with the Finder if needed.

	
class katana.unit.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: object

Abstract the interface with a specific unit of evaluation for CTF
challenges. This class must implement the evaluate and validate methods
in order to be used with Katana.

Units attempt to solve very basic and targeted CTF challenges and provide
data which could either contain a flag or another challenge. If the data
contains a flag, evaluation will be halted. If it doesn’t, the data may be
used to bootstrap further Unit scanning.

When implementing a new unit, keep in mind that any serious processing should not
occur until the Unit.evaluate method. This method is executed within the
context of a thread. Executing intensive checks in other methods could indadvertedly
slow down Katana.

	Property PRIORITY

	This is a priority from 0 (highest priority) to 100 (lowest priority). Priorities are also
scaled proportionally to parents in order to ensure children have higher priorities.

	Property RECURSE_SELF

	Specifies whether this unit can recurse into itself.

	Property NO_RECURSE

	Indicates if recursion is allowed at all for this unit

	Property DEPENDENCIES

	A list of system binary dependencies we rely on (e.g. ["steghide"])

	Property STRICT_FLAGS

	If specified, a flag must match the entire data string (not some sub-string within it).

	Property GROUPS

	a list of groups this unit belongs to. This is useful for queuing or excluding only certain
groups. By convention, this normally at least contains the package name (e.g. “crypto”
or “stego”). However, it can theoretically contain any name you would like.

	Property BLOCKED_GROUPS

	a list of groups or unit names which this unit cannot recurse into.

Here’s an example of a very basic unit class:

class Unit(katana.unit.Unit):

 # Higher priority than normal
 PRIORITY = 25
 # Groups we belong to
 GROUPS = ["web", "bruteforce"]

 def __init__(manager: katana.manager.Manager, target: katana.target.Target):
 super(Unit, self).__init__(manager, target)
 if not target.is_url:
 raise NotApplicable("not a url")

 def evaluate(self, case):
 # Do something with this URL
 return

	
PRIORITY = 50

	

	
RECURSE_SELF = False

	

	
NO_RECURSE = False

	

	
PROTECTED_RECURSE = False

	

	
DEPENDENCIES = []

	

	
STRICT_FLAGS = False

	

	
GROUPS = []

	

	
BLOCKED_GROUPS = []

	

	
classmethod get_name() → str

	By default, we assume the unit name is the same as the containing module. This can
be overridden, but should not conflict with other units.

	
classmethod validate(manager)

	Checks that required configuration values are available in the
manager configuration file. This should be called via super prior to
subclass implementation, as it ensures the section for this unit is
added.

	
can_recurse(unit_class: Type[katana.unit.Unit]) → bool

	Checks recursion rules and returns whether or not recursion is
allowed into the given unit class. This unit has already been matched
to a given recursion target from this unit.

Direct indicates whether this is the direct child or an ancestor of
self.

	Parameters

	unit_class – The child we are thinking recursing into

	
is_complete() → bool

	Returns true if either this unit or the origin target has completed

	
enumerate()

	Yield cases for evaluation given the target and manager
configuration. This allows units with multiple possible evaluations
(such as password guesser’s) to take advantage of the parallelism of
Katana without further coding. By default, this method yields a single
None value which will be passed as case in the Unit.evaluate
method below. You must yield at least one value before returning, or evaluate
will never run.

	
evaluate(case: Any)

	Run unit tasks given case which was returned from
Unit.enumerate. This could happen in any thread or process of
execution and should be stateless.

	
get_output_dir()

	Find the output directory for this unit. This will return the directory where
artifacts are expected to be stored in this context and also ensure it exists

	
generate_artifact(name: Optional[str] = None, mode: str = 'w', create: bool = True, asdir: bool = False) → Tuple[str, IO]

	Generate a new artifact, and return the path and open file handle.
The artifact is not automatically registered with the manager, since it
is initially empty. You should register any artifacts which contain
useful data based on your unit (using self.manager.register_artifact)

	
family_tree() → Generator[Unit, None, None]

	A generator which yields all parent units

	
get(name: str, default: Optional[str] = None) → str

	Get a configuration value with a default. If a value was specified under the DEFAULT section,
it will be returned before the default value specified here.
:param name: name of the parameter
:param default: default value
:return: the value or the default value

	
getb(name: str, default: Optional[bool] = None) → bool

	same as get, but returns a boolean value

	
geti(name: str, default: Optional[int] = None) → int

	same as get but returns an integer value

	
classmethod check_deps()

	The default dependency check will make sure that every item in
self.DEPENDENCIES exists as an external executable in the current
environment, and raise a NotApplicable exception otherwise. You
likely won’t need to override this, but you can if you’d like.

	
class katana.unit.Finder(manager: katana.manager.Manager, use_default: bool = True)

	Bases: object

Utilize python dynamic introspection and loading to locate units
either within the default unit list bundled with Katana or in a custom
location.

Note

This code will automatically load all *.py scripts underneath the
specified unit directory and look for a Unit class. This could be
dangerous. Don’t put random scripts in this directory.

	
validate() → None

	Validate the manager configuration for each unit. Units without
proper configuration will raise an exception which will be fed up to
the user. Each unit accepts configuration items under it’s own section
if required (e.g. [katana.units.crypto.caeser])

	
find(directory: str, prefix: str) → Generator[Type[katana.unit.Unit], None, None]

	Locate units which conform to the Katana unit specification with
the given directory. All python source file within the directory will
end up being executed. A valid unit definition contains a Unit
class which subclasses katana.unit.Unit and implements
Unit.evaluate and Unit.validate.

	
register(unit: Type[katana.unit.Unit])

	Register a unit to be used during analysis

	
match(target: katana.target.Target, scale: float = 1.0) → Generator[katana.unit.Unit, None, None]

	Match the given target to one or more units that have previously
been enumerated with the Finder.find method. This tests that the
unit itself is applicable to the target in order to find specific
applicable units

	
exception katana.unit.NotApplicable

	Bases: Exception

Indicates the Unit which was created is not applicable to the given
target, and the unit is in an undefined state.

	
exception katana.unit.MissingDependency

	Bases: Exception

Indicates the unit was missing a dependency, and cannot be loaded. The
message content is the name of the missing dependency

	
class katana.unit.NoneUnit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

	
classmethod get_name() → str

	By default, we assume the unit name is the same as the containing module. This can
be overridden, but should not conflict with other units.

	
class katana.unit.FileUnit(manager: katana.manager.Manager, target: katana.target.Target, keywords=None)

	Bases: katana.unit.Unit

This unit base class requires that the given target be a file, and also
optionally have a libmagic signature which contains one of a specified set
of keywords. To use this unit, you simply pass a special keywords
argument to its constructor in your unit subclass:

A unit that requires a file containing some sort of image
class Unit(units.FileUnit):
 def __init__(self, manager, target):
 super(Unit, self).__init__(manager, target, keywords=['image'])

	
class katana.unit.PrintableDataUnit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

This unit base class ensures that the target content contains only
printable data (that is, data which is not binary/is readable).

	
class katana.unit.NotEnglishUnit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

This unit base class ensures that the target content contains mostly
non-english text.

	
class katana.unit.NotEnglishAndPrintableUnit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

This unit base class ensures that the target content is printable, and
is also not english text (e.g. base64 data, white space, etc.)

	
class katana.unit.RegexUnit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

Utilizes a regular expression pattern to locate matching sections of the
input data. The Unit will raise NotApplicable if the target has no matches.

	
enumerate()

	Yield’s all the match objects

Target - Abstract Challenge Data

The Target class abstracts away interactions with raw target data by first evaluating
what kind target the data is, and providing convenience methods for accessing raw data, files,
or URLs from the data.

	
class katana.target.Target(manager: katana.manager.Manager, upstream: bytes, parent: Optional[katana.unit.Unit] = None, config: Optional[configparser.ConfigParser] = None)

	A Target has two main parts:

	Upstream

	Raw Data

The Upstream is what was passed to the target constructor. In the case of raw data, upstream and raw will
be identical objects. If a URL was passed to the constructor, raw will take the form of the content of the web
page. Katana will automatically attempt to fetch the page. In a similar fashion, raw will return the content of
a file, if the upstream was a path.

If you don’t rely on external tools, you should mostly deal with raw or stream. raw will either be a
bytes object, or a memory mapped file (which acts like a bytes object in most situations). stream will either
be an open file handle for file upstreams, or a BytesIO object which will act like a file. This allows you to
reference the data in an abstract way no matter what the upstream target was. Other useful properties are also
available which describe the data and are listed below.

	Property upstream

	A bytes object holding the original target data.

	Property parent

	A Unit object describing how this target was created (or None for root targets).

	Property is_printable

	Whether the data is mostly printable text

	Property is_english

	Whether the data appears to be mostly english

	Property is_image

	Whether the data is an image

	Property is_base64

	Whether the data looks like base64

	Property path

	The path to a file-backed target (URLs are also file-backed by an artifact)

	Property completed

	Whether we are done processing this target

	Property url_pieces

	A regex Match object containing the URL pieces, if this is a URL.

	Property is_url

	True if this appears to be a valid URL

	Property is_file

	True if this appears to be a valid file path. This is also true, if manager[download] is
True, and we were able to download the file as an artifact.

	Property magic

	libmagic result for the data

	Property hash

	A hashlib.md5 object representing the hash of the data

	Property start_time

	The time in seconds that this target was started

	Property end_time

	When this target completed

	Property units_evaluated

	The total number of units evaluated under this target (only root targets)

	
add_unit()

	Add a unit for tracking. This is called by Manager.queue

	
build_target()

	This method does the resource intensive part of building the target. It is done in a separate thread to
decrease the time to return from the Manager.queue_target method (e.g. when running w/ a REPL)

	
is_webpage

	Opposite of is_website_root?

	
is_website_root

	if this is a URL, return whether we are at the root of the URL

	
raw

	Return a bytes-like object for any given target type:

	Files/content already in memory: return self.content

	Files already written to disk: return a mmap object

	For all other unknown data: return self.upstream directly

	
rem_unit()

	Remove a unit for tracking. Also sets completed if all units are done.

	
stream

	Return a file-like object for any given target type:

	Files/content already in memory: return a BytesIO object

	Files already written to disk: return an binary file handle

	For all other unknown data: return a BytesIO object of upstream

	
web_host

	if this is a URL, return the hostname

	
web_port

	if this is a URL, return the port number

	
web_protocol

	if this is a URL, return the protocol

	
web_query

	if this is a url, return the query string

	
web_uri

	if this is a url, return the URI

	
website_root

	if this is a url, return the root of the URL (without any URI)

katana.units.apk — Android Packages

These units handle procedures surrounding a given .apk file, or a downloaded Android package.

	katana.units.apk.apktool — Decompile APK

katana.units.apk.apktool — Decompile APK

Decompile an APK file with apktool.

This unit depends on the apktool external dependencies. It must
be within your $PATH for Katana to use it properly.

All this unit does is call the command

apktool decode -f <the_target> -o <artifact_path>

It then looks through the results and queues each new file as targets
to recurse on.

	
class katana.units.apk.apktool.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['apktool']

	

	
GROUPS = ['apk']

	

	
PRIORITY = 40

	

	
evaluate(case: Any) → None

	This evaluate function calls the command:

apktool decode -f <the_target> -o <artifact_path>

and loops through the results, queuing each new file as
a new target to recurse on.

	Parameters

	case – A case returned by enumerate. For this unit,
the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.crack — Hash Cracking

These units attempt to crack hashes, if they are ever found or determined in Katana’s operations.

	katana.units.crack.md5 — Crack MD5 Hash

katana.units.crack.md5 — Crack MD5 Hash

Attempt to crack an MD5 hash.

This unit finds potential MD5 hashes matching the defined regular expression:

MD5_PATTERN = re.compile(rb"[a-fA-F0-9]{32}", re.DOTALL | re.MULTILINE)

This unit cracks the MD5 hash by using a supplied password or dictionary
file. Currently it does not support reaching out to an online cracker,
though this would be ideal.

	
class katana.units.crack.md5.Unit(*args, **kwargs)

	Bases: katana.unit.Unit

	
GROUPS = ['crack', 'bruteforce']

	

	
NO_RECURSE = True

	

	
PRIORITY = 75

	

	
enumerate() → Generator[Any, None, None]

	Yield unit cases. This will read in the supplied password or
a given dictionary file to generate new MD5 hashes and test
them against the supplied MD5 hash target.

	Returns

	Generator of target cases, in this case a byte string.

	
evaluate(case: Any) → None

	Evaluate the target. This will take the current case supplied by
the enumerate function, generate an MD5 hash with it and compare
it to the supplied target. If it is a match, we have successfully
cracked the hash and that case value is registered as new data.

	Parameters

	case – A case returned by enumerate

	Returns

	None. This function should not return any data.

katana.units.crypto — Cryptography

These units handle procedures that are often necessary for challenges in the Cryptography category of CTFs.

Note

Often times, these units can take a long amount of time and bottleneck Katana’s operations. If you know you do not need these checks, include --exclude crypto in your command.

Crypto units are often applicable to lots of targets, and considering they
can do some brute-force operations, they often take up a lot of processing
and can waste time for Katana’s operations.

For this reason, we implemented a commonly used
katana.units.crypto.CryptoUnit that checks to ensure the target
is not a viable URL (to not clobber web units) and it is not a potentially
useful file (like an image, document, or something else specific).

	
class katana.units.crypto.CryptoUnit(*args, **kwargs)

	This Unit will raise katana.unit.NotApplicable if the
unit is a URL or a potentially useful file.

	katana.units.crypto.affine — Affine Cipher

	katana.units.crypto.atbash — Atbash Cipher

	katana.units.crypto.caesar255 — Caesar Cipher with ASCII 255

	katana.units.crypto.caesar — Caesar Cipher with 26 Letters

	katana.units.crypto.dna — T,A,C,G,U DNA Letters

	katana.units.crypto.phonetic — NATO Phonetic Alphabet

	katana.units.crypto.polybius — Polybius Square Cipher

	katana.units.crypto.quipqiup — Online Substitution Cipher solver

	katana.units.crypto.railfence — Railfence Cipher

	katana.units.crypto.reverse — Simple Reverse

	katana.units.crypto.rot47 — ROT47 Cipher

	katana.units.crypto.rsa — Attempt to solve RSA

	katana.units.crypto.t9 — T9 phone keypad cipher

	katana.units.crypto.vigenere — Vigenere Cipher

	katana.units.crypto.xor — XOR Operation

katana.units.crypto.affine — Affine Cipher

Attempt to decrypt a target with the classic Affine cipher.

You can read more about the Affine cipher here:
https://en.wikipedia.org/wiki/Affine_cipher

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English.

You can supply and customize the given A and B values as well as the
alphabet to be used in the Affine cipher operation, though by default
this will bruteforce and use the range provided with the English alphabet,
letters A-Z.

	
class katana.units.crypto.affine.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'affine']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “affine”.

	
PRIORITY = 65

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
lower priority due to how uncommon this is within CTFs.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That could spiral in to an
infinite loop.

	
enumerate() → Generator[Any, None, None]

	Yield unit cases. This will check if any given A or B
values are supplied to the unit. If a value is not supplied,
it will use all numbers up the length of the alphabet
(which can also be supplied), by default, the English letters
A-Z. The corresponding value will be the greatest common
denominator between that in the length, as that is the
only correspondent value that is mathematically
required for the Affine cipher to work.

	Returns

	Generator of target cases, in this case a tuple of A and B values.

	
evaluate(case: Any) → None

	Evaluate the target. This will perform

	Parameters

	case – A case returned by enumerate, in this case a tuple of A and B values.

	Returns

	None. This function should not return any data.

	
katana.units.crypto.affine.affine(c: int, a: int, b: int, alphabet: bytes) → str

	Perform the affine cipher for a single letter.

	C

	An integer value for the given letter (its location within the alphabet)

	A

	An integer value for the A value used in the Affine cipher operation.

	B

	An integer value for the B value used in the Affine cipher operation.

	Alphabet

	A bytes string for the supplied alphabet.

katana.units.crypto.atbash — Atbash Cipher

Perform the classic Atbash cipher on the given target.

You can read more about the Atbash cipher here:
https://en.wikipedia.org/wiki/Atbash

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

The gist of the Atbash cipher is that it will perform a substitution cipher
with the key being the typical English alphabet, just reversed. Basically,
A-Z maps to Z-A.

	
class katana.units.crypto.atbash.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'atbash']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “atbash”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
lower priority due to how uncommon this is within CTFs.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That could spiral in to an
infinite loop.

	
evaluate(case: Any) → None

	This evaluate function performs the Atbash cipher on the target.

	Parameters

	case – A case returned by enumerate. For this unit,
the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.crypto.caesar255 — Caesar Cipher with ASCII 255

	Perform a Caesar cipher, with the key mapping in the range of all 255 ASCII

	characters, on the target.

You can read more about the Caesar cipher here:
https://en.wikipedia.org/wiki/Caesar_cipher

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

	
class katana.units.crypto.caesar255.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'caesar255']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “caesar255”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That could spiral in to an
infinite loop.

	
enumerate() → Generator[Any, None, None]

	Yield unit cases. The end-user can either supply a shift value
as an argument, or it will bruteforce all the possible shift
values within in the ASCII range (i.e. try the numbers 1-255).

	Returns

	Generator of target cases, in this case an integer for the shift value (provided, or range 1-255).

	
evaluate(shift: int) → None

	Perform the caesar cipher on the target.

	Parameters

	case – A case returned by enumerate, in this case, the shift value to use for the Caesar Cipher operation.

	Returns

	None. This function should not return any data.

katana.units.crypto.caesar — Caesar Cipher with 26 Letters

Perform a Caesar cipher on the target.

You can read more about the Caesar cipher here:
https://en.wikipedia.org/wiki/Caesar_cipher

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

	
class katana.units.crypto.caesar.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'caesar']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “caesar”.

	
PRIORITY = 40

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
higher priority due to how common this is within CTFs.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That could spiral in to an
infinite loop.

	
enumerate() → Generator[Any, None, None]

	Yield unit cases. The end-user can either supply a shift value
as an argument, or it will bruteforce all the possible shift
values within in the English alphabet (i.e. try the numbers 1-25).

	Returns

	Generator of target cases, in this case an integer for the shift value (provided, or range 1-25).

	
evaluate(case: Any) → None

	Perform the caesar cipher on the target.

	Parameters

	case – A case returned by enumerate, in this case, the shift value to use for the Caesar Cipher operation.

	Returns

	None. This function should not return any data.

	
katana.units.crypto.caesar.shift_char(c: str, shift: int, alphabet: str) → str

	This is a convenience function that will perform the most primitive
operation of the Caesar Cipher – shifting one character by a given
amount within the given alphabet.

katana.units.crypto.dna — T,A,C,G,U DNA Letters

DNA/Codon Cipher.

This unit will translate groupings of letters (A,T,C,G,U) into
22 out of 26 possible English characters.

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

	
class katana.units.crypto.dna.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'dna']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “dna”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That could spiral in to an
infinite loop.

	
evaluate(case: Any) → None

	Evaluate the target.

Read individual Codon groupings and replace them
with the corresponding English character.

	Parameters

	case – A case returned by enumerate. In this case, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.crypto.phonetic — NATO Phonetic Alphabet

	
class katana.units.crypto.phonetic.Unit(*args, **kwargs)

	Bases: katana.unit.RegexUnit

	
BLOCKED_GROUPS = ['crypto']

	This unit does not recurse into other Crypto units because that might
spiral into a disaster.

	
GROUPS = ['crypto', 'phonetic']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name of the unit, “phonetic”.

	
PATTERN = regex.Regex(b'(alfa|alpha|bravo|charlie|delta|echo|foxtrot|golf|hotel|india|juliet|kilo|lima|mike|november|oscar|papa|quebec|romeo|sierra|tango|uniform|victor|whiskey|xray|x-ray|yankee|zulu) ?((alfa|alpha|bravo|charlie|delta|echo|foxtrot|golf|hotel|india|juliet|kilo|lima|mike|november|oscar|papa|quebec|romeo|sierra|tango|uniform|victor|whiskey|xray|x-ray|yankee|zulu) ?){5,}', flags=regex.A | regex.S | regex.I | regex.M | regex.V0)

	This pattern is used specifically for this unit to detect the NATO
phonetic alphabet.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty.

	
evaluate(match: re.Match) → None

	Evaluate the target.

	Parameters

	match – A single regular expression match

	Returns

	None

katana.units.crypto.polybius — Polybius Square Cipher

Attempt to decrypt a Polybius Square cipher.

You can read more about the Polybius Square cipher here:
https://en.wikipedia.org/wiki/Polybius_square

This unit will search for numbers and translate them to the proper
mapping within a Polybius square.

	
class katana.units.crypto.polybius.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['crypto', 'polybius']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, as well as the name for this unit.

	
PATTERN = regex.Regex(b'([1-5]+ ?)+', flags=regex.A | regex.S | regex.M | regex.V0)

	This pattern is used specifically for this unit to detect the data
used for the Polybius cipher.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a default
priority.

	
evaluate(match) → None

	Evaluate the target.

	Parameters

	match – A single regular expression match. In this case, this should retrieve numbers to be used to map to letters within the Polybius Square.

	Returns

	None. This function should not return any data.

katana.units.crypto.quipqiup — Online Substitution Cipher solver

Substituion cipher solver, by outsourcing to https://quipqiup.com/.

The gist of this code is ripped from
https://github.com/rallip/substituteBreaker. The unit takes the target, and
if it does not look English text but it is clearly printable characters, it
offers it to quipqiup online.

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

Note

This unit does not recurse. It simply looks for flags in the output of
quipqiup’s best potential solution. Note that Katana might find flags
that are not in the specific flag format, but also denoted in a
“the flag is:” structure.

	
class katana.units.crypto.quipqiup.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'quipquip', 'substitution']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit and some other related topics.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
lower priority.

	
RECURSE_SELF = False

	This unit does not recurse. It simply looks for flags in the output of
quipqiup’s best potential solution.

	
evaluate(case: Any) → None

	Evaluate the target.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.crypto.quipqiup.decodeSubstitute(cipher: str, time=3, spaces=True) → str

	This is stolen from https://github.com/rallip/substituteBreaker
All it does is use the requests module to send the ciphertext to
quipqiup and returns the results as a string.

katana.units.crypto.railfence — Railfence Cipher

Railfence Cipher decoder

This takes arguments rails and offset which you can set,
but they will be bruteforce within the range of 2-10 and 0-10
respectively.

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

The code for this is shamelessly stolen from
https://github.com/tothi/railfence

	
class katana.units.crypto.railfence.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'railfence']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit, “railfence”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
lower priority.

	
RECURSE_SELF = False

	This unit does not recurse into itself. That would be silly.

	
enumerate()

	Yield cases for evaluation given the target and manager
configuration. This allows units with multiple possible evaluations
(such as password guesser’s) to take advantage of the parallelism of
Katana without further coding. By default, this method yields a single
None value which will be passed as case in the Unit.evaluate
method below. You must yield at least one value before returning, or evaluate
will never run.

	
evaluate(case: Any) → None

	Evaluate the target. This simply attemptes to decrypt the target with the Railfence cipher, using the rails and offset values returned by enumerate`.

	Parameters

	case – A case returned by enumerate. In this case, it is a tuple containing a rail value and offset value to be used for the Railfence cipher operations.

	Returns

	None

	
katana.units.crypto.railfence.decryptFence(cipher, rails, offset=0)

	Stolen from https://github.com/tothi/railfence.

This is a convenience function to decrypt data with the Railfence
cipher.

	Parameters

	
	cipher – The ciphertext as a string.

	rails – The integer number of rails to use in the Railfence cipher operations.

	offset – The integer offset number to use in the Railfence cipher operations.

	
katana.units.crypto.railfence.encryptFence(plain, rails, offset=0)

	Stolen from https://github.com/tothi/railfence.

This is a convenience function to encrypt data with the Railfence
cipher.

	Parameters

	
	plain – The plaintext as a string.

	rails – The integer number of rails to use in the Railfence cipher operations.

	offset – The integer offset number to use in the Railfence cipher operations.

katana.units.crypto.reverse — Simple Reverse

Reverse ciphertext

This will simply reverse the text and look for a flag.

This unit inherits from the
katana.unit.NotEnglishUnit class, as we can expect
the data to not be readable English (if it is in fact reverse text).
It also inherits from the katana.units.crypto.CryptoUnit
class to ensure it is not a viable URL or potentially useful file.

	
class katana.units.crypto.reverse.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'reverse']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included.

	
PRIORITY = 70

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a lower
priority.

	
RECURSE_SELF = False

	Do not recurse into self

	
evaluate(case: Any) → None

	Evaluate the target. This simply reverses the target.

	Parameters

	case – A case returned by enumerate. In this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.crypto.rot47 — ROT47 Cipher

ROT47 decoder

The gist of this code is ripped from
https://rot47.net/_py/rot47.txt.

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

	
class katana.units.crypto.rot47.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other
crypto units would be silly.

	
GROUPS = ['crypto', 'rot47']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit, “rot47”.

	
PRIORITY = 45

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
higher priority.

	
RECURSE_SELF = False

	Do not recurse into self

	
do_rot47(s)

	Shamelessly stolen from https://rot47.net/_py/rot47.txt

This function takes a string and performs the ROT47 operation
on it.

	Parameters

	s – The byte string to perform the ROT47 operation on.

	
evaluate(case: Any) → None

	Evaluate the target.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None

katana.units.crypto.rsa — Attempt to solve RSA

RSA decryptor

This takes arguments “e”, “n”, “q”, “p”, “dq”, “dp”, “d”, “c”, “phi”,
though they will potentially be automatically decoded by the program
if a plaintext file is supplied.

	
class katana.units.crypto.rsa.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'rsa']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit, “rsa”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
lower priority.

	
RECURSE_SELF = False

	Do not recurse into self

	
evaluate(case: Any) → None

	Evaluate the target.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should return any data.

	
katana.units.crypto.rsa.contfrac_to_rational(frac: list)

	This function is used for the Weiner’s Little D attack.

Converts a finite continued fraction [a0, ..., an] to an x/y rational.

	
katana.units.crypto.rsa.convergents_from_contfrac(frac: list) → list

	This function is used for the Weiner’s Little D attack.

Computes the list of convergents using the list of partial quotients

	Parameters

	frac – Fractions represented by a list

	Returns

	A list of convergents

	
katana.units.crypto.rsa.egcd(a, b)

	This function is used for the Weiner’s Little D attack.

Determines the Euclidean Greatest Common Denominator between
given values.

	Parameters

	
	a – One value to be used to find the GCD for.

	b – Another value to be used to find the GCD for.

	Returns

	

	
katana.units.crypto.rsa.find_cube_root(n)

	This function is used for the Cube Root attack.

Determines the cube root of a number.

	Parameters

	n – The number to determine the cube root of.

	Returns

	The resulting cube root.

	
katana.units.crypto.rsa.find_variables(text)

	This is used to detect variables in a given file, or handle a given pubkey.

	Parameters

	text – The string to pull the variables from.

	Returns

	A Generator for an RSA letter variable and its value.

	
katana.units.crypto.rsa.isqrt(n)

	This function is used for the Weiner’s Little D attack.

Determines the integer square root of a nunber.

	Parameters

	n – The number to determine the integer square root of.

	Returns

	The resulting integer square root.

	
katana.units.crypto.rsa.mod_inv(a, m)

	This function is used for the Weiner’s Little D attack.

Deterine the modular inverse, given a base and the modulus.

	Parameters

	
	a – The base to use for the modular inverse operation.

	m – The modulus to use for the modular inverse operation.

	Returns

	An integer as the result of the modular inverse.

	
katana.units.crypto.rsa.parse_int(given)

	This function will parse out a Python value regardless of the
representation a number is given in the provided string. It will
detect hex or an integer form.

	Parameters

	given – The string information that potentially includes a number.

	Returns

	The Python integer value found.

	
katana.units.crypto.rsa.rational_to_contfrac(x: int, y: int) → list

	This function is used for the Weiner’s Little D attack.

Converts a rational x/y fraction into a list of partial quotients [a0, …, an]

	Parameters

	
	x – The numerator of the provided fraction.

	y – The denominator of the provided fraction.

	Returns

	a list of partial quotients.

	
katana.units.crypto.rsa.weiners_little_d(e, n)

	This function is used for the Weiner’s Little D attack.

Actually

	Parameters

	
	e – The RSA e-value (exponent).

	n – The RSA N-value (modulus).

	Returns

	The determined RSA d-value (private key) after the Weiner’s Little D attack.

katana.units.crypto.t9 — T9 phone keypad cipher

T9 Phone keypad Cipher

This unit will decode a T9 cipher and look for flags.
This code relies on there being spaces between the T9 ciphers.
It can be made cleaner with some regular expression processing, but it
has not yet been done…

	
class katana.units.crypto.t9.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 't9']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit, “t9”.

	
PATTERN = regex.Regex(b'[0-9*]+(\\w([0-9*]+))*', flags=regex.A | regex.V0)

	

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a defualt
priority.

	
RECURSE_SELF = False

	Do not recurse into self

	
decode_one(number)

	

	
evaluate(match)

	Run unit tasks given case which was returned from
Unit.enumerate. This could happen in any thread or process of
execution and should be stateless.

katana.units.crypto.vigenere — Vigenere Cipher

Attempt to decrypt a Vigenere cipher.

You can supply a key argument to use for the Vigenere cipher operation.
With the current implementation, if the key is not provided, this unit does
not run (it does not attempt to bruteforce it or determine a key on its own).

This unit inherits from the
katana.unit.NotEnglishAndPrintableUnit class, as we can expect
the data to still be printable characters (letters, numbers and punctuation)
but not readable English. It also inherits from the
katana.units.crypto.CryptoUnit class to ensure it is not a viable
URL or potentially useful file.

	
class katana.units.crypto.vigenere.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishAndPrintableUnit, katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'vigenere']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit, “vigenere”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
lower priority.

	
RECURSE_SELF = False

	Do not recurse into self.

	
evaluate(case: Any) → None

	Evaluate the target.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.crypto.vigenere.vigenere(plaintext, key)

	Perform a vigenere cipher.

	Parameters

	
	plaintext – The plaintext message to use for the Vigenere cipher.

	key – The key to use for the Vigenere cipher.

	Returns

	The resulting ciphertext from the Vignere cipher operation

katana.units.crypto.xor — XOR Operation

XOR decoder

You can supply a key argument to use for the XOR operation.
With the current implementation, if the key is not provided, this unit will
attempt to bruteforce the XOR with a single-byte range (1-255).

	
class katana.units.crypto.xor.Unit(*args, **kwargs)

	Bases: katana.units.crypto.CryptoUnit

	
BLOCKED_GROUPS = ['crypto']

	These are tags for groups to not recurse into. Recursing into other crypto units
would be silly.

	
GROUPS = ['crypto', 'xor']

	These are “tags” for a unit. Considering it is a Crypto unit, “crypto”
is included, and the name of the unit itself, “xor”.

	
PRIORITY = 70

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a lower
priority.

	
RECURSE_SELF = False

	Do not recurse into self.

	
evaluate(case: Any) → None

	Evaluate the target. Perform the XOR operation with the provided
key argument. If no key is provided, it will bruteforce a
single-byte XOR within the range of 1-255.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.crypto.xor.xor(data, key)

	Perform an XOR operation across the provided data with a given key.

	Parameters

	
	data – A byte string to use as the data for the XOR operation.

	key – The key to use the for the XOR operation.

	Returns

	The result of the XOR operation as a byte string.

katana.units.esoteric — Esoteric Languages

These units evaluate code that seems to be from a given esoteric language.

Note

Often times, these units can take a long amount of time and bottleneck Katana’s operations. If you know you do not need these checks, include --exclude esoteric in your command.

	katana.units.esoteric.brainfuck — Brainfuck

	katana.units.esoteric.cow — COW

	katana.units.esoteric.jsfuck — JSFuck

	katana.units.esoteric.malbolge — Malbolge

	katana.units.esoteric.ook — Ook

	katana.units.esoteric.piet — Piet

	katana.units.esoteric.pikalang — Pikalang

katana.units.esoteric.brainfuck — Brainfuck

Unit for brainfuck esoteric language.

Given target data, this unit will ignore everything that is NOT valid
Brainfuck characters and exclude them.

This unit includes a evaluate_brainfuck function that is often
used by other units like Ook and Pikalang.

	
class katana.units.esoteric.brainfuck.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

	
GROUPS = ['esoteric', 'brainfuck']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “brainfuck”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a defualt
priority.

	
evaluate(case: Any) → None

	Evaluate the target. Run the target as Brainfuck code and
give the standard output results to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.esoteric.brainfuck.buildbracemap(code: bytes) → dict

	This is used for the Brainfuck operations. It will match
opening and closing braces for use within the Brainfuck program.

	Parameters

	code – A byte string of the Brainfuck code.

	Returns

	a bracemap dictionary

	
katana.units.esoteric.brainfuck.cleanup(code: bytes) → str

	This is used for the Brainfuck operations. It will clean the
provided code to only find the appropriate Brainfuck operators.

	Parameters

	code – A byte string of the Brainfuck code.

	Returns

	Only the bytes of appropriate Brainfuck operators.

	
katana.units.esoteric.brainfuck.evaluate_brainfuck(code: bytes, input_file, timeout: int = 1)

	This function actually runs the provided Brainfuck operations and
returns the standard output.

	Parameters

	
	code – The code to run as Brainfuck.

	input_file – A file to for the Brainfuck program to read as standard input. If this is not provided, it will yield a newline.

	timeout – A timeout value in seconds. After this time has elapsed, the Brainfuck code will stop executing.

	Returns

	The standard output for the Brainfuck program.

katana.units.esoteric.cow — COW

Unit for Cow esoteric language.

Given target data, this unit will ignore everything that is NOT valid
Cow characters and exclude them.

	
class katana.units.esoteric.cow.Unit(*args, **kwargs)

	Bases: katana.unit.Unit

	
GROUPS = ['esoteric', 'cow']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “cow”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a defualt
priority.

	
RECURSE_SELF = False

	There is no reason to recurse into yourself. We shouldn’t get cow out.

	
evaluate(case: Any) → None

	Evaluate the target. Run the target as Cow code and
give the standard output results to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.esoteric.cow.build_jumpmap(code: bytes) → dict

	This is used for the Cow operations. It will match
opening and closing braces for use within the Cow program.

	Parameters

	code – A byte string of the Cow code.

	Returns

	a jumpmap dictionary

	
katana.units.esoteric.cow.cleanup(code: bytes) → bytes

	This is used for the Cow operations. It will clean the
provided code to only find the appropriate Cow operators.

	Parameters

	code – A byte string of the Cow code.

	Returns

	Only the bytes of appropriate Cow operators.

	
katana.units.esoteric.cow.evaluate_cow(code, input_file, timeout=-1)

	This function actually runs the provided Cow operations and
returns the standard output.

	Parameters

	
	code – The code to run as Cow.

	input_file – A file to for the Cow program to read as standard input. If this is not provided, it will yield a newline.

	timeout – A timeout value in seconds. After this time has elapsed, the Cow code will stop executing.

	Returns

	The standard output for the Cow program,

katana.units.esoteric.jsfuck — JSFuck

JSFuck decoder

This unit will attempt to execute JSFuck and
look for flags in the result.

	
class katana.units.esoteric.jsfuck.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishUnit

	
DEPENDENCIES = ['node']

	Because this requires JavaScript code, node is a necessary binary
dependency.

	
GROUPS = ['esoteric', 'jsfuck', 'javascript']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “jsfuck”, and
the tag “javascript”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
low priority because it requires an external tool.

	
RECURSE_SELF = False

	It would not make sense to recurse into ourself. We shouldn’t get JSFuck
out.

	
evaluate(case: Any)

	Evaluate the target. Run the target as JSFuck code and
return the evaluated source code to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.esoteric.malbolge — Malbolge

Unit to run code in the Malbolge esoteric language.

This code is shamelessly stolen from
https://github.com/kmyk/malbolge-interpreter.
We do not claim to know everything that it does… it is Malbolge,
after all.

	
class katana.units.esoteric.malbolge.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.NotEnglishUnit

	
GROUPS = ['esoteric', 'malbolge']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “malbolge”.

	
PRIORITY = 10

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority.

	
evaluate(case: Any)

	Evaluate the target. Run the target as Malbolge code and
return the standard output to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.esoteric.malbolge.crypt1(i, m)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.crypt2(m)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.crz(xs, ys)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.decrypt1(i, c)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.execute(code, inf=<_io.BufferedReader name='<stdin>'>, allow_not_isprint=False, debug=False)

	This function is execute Malbolge code.

	
katana.units.esoteric.malbolge.execute_step(a, c, d, mem, inf=<_io.BufferedReader name='<stdin>'>, outf=<_io.BufferedWriter name='<stdout>'>)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.initial_memory(code, allow_not_isprint=False)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.isword(x)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.rotr(x)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.tri(x)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.unword(x)

	This function is used as part of Malbolge’s operations.

	
katana.units.esoteric.malbolge.word(ys)

	This function is used as part of Malbolge’s operations.

katana.units.esoteric.ook — Ook

Unit for the Ook esoteric language.

This unit will map the Ook operations to their Brainfuck equivalant,
and then pass along the actual execution to the Brainfuck unit’s
evaluate_brainfuck function.

	
class katana.units.esoteric.ook.Unit(*args, **kwargs)

	Bases: katana.unit.NotEnglishUnit

	
GROUPS = ['esoteric', 'ook']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “ook”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has default
priority

	
evaluate(case: Any) → None

	Evaluate the target. Run the target as Ook code and
give the standard output results to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.esoteric.ook.evaluate_ook(code, input_file, timeout=1)

	This function will actually evaluate the Ook code, by translating
it to Brainfuck character mapping and then passing it to
the evaluate_brainfuck unit.

This function also verifies that the Ook code is not an
odd-length string. That would result in improper Ook code.

	Parameters

	
	code – A byte string of the Ook code.

	input_file – A file to for the Ook program to read as standard input. If this is not provided, it will yield a newline.

	timeout – A timeout value in seconds. After this time has elapsed, the Ook code will stop executing.

	Returns

	The standard output for the Ook program,

katana.units.esoteric.piet — Piet

Piet esoteric language

This unit inherits from the katana.unit.FileUnit to ensure
that the target is in fact an image file.

This unit will extract the text returned by a given
Piet language image using the npiet command-line
utility. The syntax is:

npiet -e 1000000 <target_path>

	
class katana.units.esoteric.piet.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['npiet']

	Required depenencies for this unit “npiet”

	
GROUPS = ['esoteric', 'npiet', 'piet']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “npiet”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = False

	It would not make sense to recurse into ourself

	
evaluate(case: Any)

	Evaluate the target. Run the npiet code and
give the standard output results to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.esoteric.pikalang — Pikalang

Pikalang esoteric decoder

This unit will map the Pikalang operations to their Brainfuck equivalant,
and then pass along the actual execution to the Brainfuck unit’s
evaluate_brainfuck function.

In the previous framework of Katana, this unit attempted to decode
Pikalang in seemingly TWO different variations. One was a literal mapping
to Brainfuck code, the other did something different that required much more
code (https://github.com/joelsmithjohnson/pikachu-interpreter)

I have not translated that other code to use bytes, and I do not see the need
to do so currently, considering how obscure Pikalang is to begin with.

	
class katana.units.esoteric.pikalang.Unit(*args, **kwargs)

	Bases: katana.unit.PrintableDataUnit

	
GROUPS = ['esoteric', 'pikalang']

	These are “tags” for a unit. Considering it is a Esoteric unit,
“esoteric” is included, as well as the unit name “pikalang”.

	
PRIORITY = 40

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. Has a slightly higher
priority

	
evaluate(case: Any)

	Evaluate the target. Run the target as Pikalang code and
give the standard output results to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.forensics — Forensics

These units handle procedures that are often necessary for challenges in the Forensics category of CTFs.

	katana.units.forensics.binwalk — Binwalk

	katana.units.forensics.foremost — Foremost

katana.units.forensics.binwalk — Binwalk

Binwalk file carving

This unit will run binwalk to extract other files out of one given file.
The syntax runs as:

binwalk -e <target_path> --directory <binwalk_directory> --dd=.* -M

	
class katana.units.forensics.binwalk.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['carver']

	Groups which this unit cannot recurse into.

	
DEPENDENCIES = ['binwalk']

	Required depenencies for this unit “binwalk”. This must be in
your PATH to be executed.

	
GROUPS = ['forensics', 'binwalk', 'carver']

	These are “tags” for a unit. Considering it is a Forensics unit,
“forensics” is included, as well as the unit name “binwalk”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = False

	Don’t recurse into any of the extract objects. Binwalk should
have carved them out already.

	
evaluate(case: Any)

	Evaluate the target. Run binwalk on the target and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.forensics.binwalk.md5sum(path: str) → _hashlib.openssl_md5

	Quick convenience function to get the MD5 hash of a file

katana.units.forensics.foremost — Foremost

Binwalk file carving

This unit will run foremost to extract other files out of one given file.
The syntax runs as:

foremost <target_path> -o <foremost_directory>

	
class katana.units.forensics.foremost.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['carver']

	Groups which this unit cannot recurse into.

	
DEPENDENCIES = ['foremost']

	Required depenencies for this unit “foremost”. This must be in
your PATH to be executed.

	
GROUPS = ['forensics', 'foremost', 'carver']

	These are “tags” for a unit. Considering it is a Forensics unit,
“forensics” is included, as well as the unit name “foremost”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = False

	Don’t recurse into any of the extract objects. Binwalk should
have carved them out already.

	
evaluate(case: str)

	Evaluate the target. Run foremost on the target and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.forensics.foremost.md5sum(path)

	Quick convenience function to get the MD5 hash of a file

katana.units.gzip — GZIP files

These units handle procedures that to work with GZIP archive files.

Admittedly, this should be bundled to in a larger, “archive” unit package, but this has not yet been done.

	katana.units.gzip.gunzip — Extract GZIP Archive

katana.units.gzip.gunzip — Extract GZIP Archive

GZIP file extraction

This unit works via the built-in Python library gzip, so there is
no need for an external binary dependency.

The unit inherits from katana.unit.FileUnit to ensure the target
is a GZIP file.

Note that GZIP files do not have support for passwords, so that is not implemented here.

	
class katana.units.gzip.gunzip.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
GROUPS = ['gzip', 'archive']

	These are “tags” for a unit. Considering it is a GZIP unit, “gzip”
is included, as well as the tag “archive”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = True

	This unit can recurse into itself because we can end up with nested
GZIPS.

	
evaluate(case: str)

	Evaluate the target. Extract the target with GZIP and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.ocr — Optical Character Recognition

These units perform optical character recognition, to determine information that might only be displayed in images.

	katana.units.ocr.tesseract — Tesseract

katana.units.ocr.tesseract — Tesseract

Unit to perform Optical Character Recognition with Tesseract.

The unit inherits from katana.unit.FileUnit to ensure the target
is an image.

This unit uses the Python library for Tesseract, which must be installed
for this to run.

	
class katana.units.ocr.tesseract.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
GROUPS = ['ocr', 'tesseract']

	These are “tags” for a unit. Considering it is a Ocr unit, “ocr”
is included, as well as the unit name “tesseract”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority because this is lightweight.

	
RECURSE_SELF = False

	Do not recurse into itself, since it will not provide another image.

	
evaluate(case: Any) → None

	Evaluate the target. Attempt OCR on the target and
recurse on any newfound data.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.ocr.tesseract.attempt_ocr(image_path: str) → str

	Run tesseract against an image file and return the string found

	Parameters

	image_path – The path to an image file.

	Returns

	The string determined by Tesseract’s OCR efforts.

katana.units.pcap — Packet Capture Processing

These units process .pcap files and run other commands and tools that relate to them.

	katana.units.pcap.tcpflow — tcpflow

katana.units.pcap.tcpflow — tcpflow

tcpflow

This unit will carve out files from a given PCAP file using the tcpflow
command-line utility. The syntax runs as:

tcpflow -r <target_path> -o <tcpflow_directory>

The unit inherits from katana.unit.FileUnit to ensure the target
is a PCAP file.

	
class katana.units.pcap.tcpflow.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['tcpflow']

	Required depenencies for this unit “tcpflow”

	
GROUPS = ['network', 'pcap', 'tcpflow']

	These are “tags” for a unit. Considering it is a pcap unit, “pcap”
is included, as well as the tag “network”, and unit name “tcpflow”

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = True

	In case we have extract other PCAPs for some reason, we CAN recurse into
ourselves.

	
evaluate(case: Any)

	Evaluate the target. Run tcpflow on the target and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.pdf — PDF File Processing

These units process .pdf files and run other commands and tools that relate to them.

	katana.units.pdf.pdf2text — pdf2text

	katana.units.pdf.pdfcrack — PDFCrack - Crack Password

	katana.units.pdf.pdfimages — pdfimages - Extract Images

	katana.units.pdf.pdfinfo — pdfinfo

katana.units.pdf.pdf2text — pdf2text

Convert PDF to Text

This unit retrieves the text included in a PDF document, using the
“pdftotext” Python library.

The unit inherits from katana.unit.FileUnit to ensure the target
is a PDF file.

	
class katana.units.pdf.pdf2text.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['pdf']

	PDFs shouldn’t come out of this. So no reason to look.

	
GROUPS = ['pdf', 'pdftotext', 'pdf2text']

	These are “tags” for a unit. Considering it is a pdf unit, “pdf”
is included, and the name of the unit, “pdftotext”

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority if this is detected…

	
RECURSE_SELF = False

	Again no PDF from this. So recursion is silly.

	
evaluate(case: Any) → None

	Evaluate the target. Extract the text out of the PDF document and
recurse on any newfound text.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.pdf.pdfcrack — PDFCrack - Crack Password

Crack a password-protected PDF

This unit attempt to unlock a password-protected PDF file. This is done
with the PyPDF2 module in Python, which must be installed for this work.
First the unit will try with an empty password, and then it will try with
the user-supplied password argument. Finally, it will bruteforce with a
supplied dictionary file.

The unit inherits from katana.unit.FileUnit to ensure the target
is a PDF file.

Note

Note that it only (potentially) determines the password, but does nothing
else with the file.

	
class katana.units.pdf.pdfcrack.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['pdf']

	PDFs shouldn’t come out of this. So no reason to look.

	
GROUPS = ['pdf', 'pdfcrack']

	These are “tags” for a unit. Considering it is a pdf unit, “pdf”
is included.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority if this is detected…

	
RECURSE_SELF = False

	Again no PDF from this. So recursion is silly.

	
enumerate()

	This function will first yield an empty password, then the
supplied password argument, then loop through each line of
a provided dictionary file. The password will then be used by
the evaluate function to try and open the encrypted PDF.

	
evaluate(case: Any) → None

	Evaluate the target. Attempt to open the PDF document with a supplied
password given by enumerate.

	Parameters

	case – A case returned by enumerate. In this case, this will be a string value supplied as an argument or bruteforce via a supplied dictionary file.

	Returns

	None. This function should not return any data.

katana.units.pdf.pdfimages — pdfimages - Extract Images

Extract PDF images

This unit retrieves the images included in a PDF document,
using the pdfimages command-line tool. The syntax is:

pdfimage -png <target_path> <pdfimages_directory>

The unit inherits from katana.unit.FileUnit to ensure the target
is a PDF file.

	
class katana.units.pdf.pdfimages.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['pdf']

	PDFs shouldn’t come out of this. So no reason to look.

	
GROUPS = ['pdf', 'pdfimages']

	These are “tags” for a unit. Considering it is a pdf unit, “pdf”
is included, and the name of this unit “pdfimages”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority if this is detected…

	
RECURSE_SELF = False

	Again no PDF from this. So recursion is silly.

	
evaluate(case: Any) → None

	Evaluate the target. Run pdfimages on the target and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.pdf.pdfinfo — pdfinfo

PDFInfo

This unit checks the PDF information of a given target, using the
pdfinfo command-line tool. You can optionally pass in arguments,
user_password and owner_password to use with the utility.
The syntax is:

pdfinfo <target_path> -upw <user_password> -opw <owner_password>

The unit inherits from katana.unit.FileUnit to ensure the target
is a PDF file.

	
class katana.units.pdf.pdfinfo.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['pdf']

	PDFs shouldn’t come out of this. So no reason to look.

	
DEPENDENCIES = ['pdfinfo']

	Required depenencies for this unit “pdfinfo”

	
GROUPS = ['pdf']

	These are “tags” for a unit. Considering it is a pdf unit, “pdf”
is included.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a priority
of 60.

	
RECURSE_SELF = False

	Again no PDF from this. So recursion is silly.

	
evaluate(case: Any) → None

	Evaluate the target. Run pdfinfo on the target and
recurse on any new found information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.raw — Miscellaneous general operations

These units do small operations on miscellaneous data, tools that could potentially be run across all targets, or fuctionality that might not fit in any other category or unit family.

	katana.units.raw.ascii85 — Decode Ascii85

	katana.units.raw.base32 — Decode Base32

	katana.units.raw.base58 — Decode Base58

	katana.units.raw.base64 — Decode Base64

	katana.units.raw.base85 — Decode Base85

	katana.units.raw.exiftool — Exiftool

	katana.units.raw.morsecode — Interpret Morsecode

	katana.units.raw.qrcode — Run zbarimg

	katana.units.raw.strings — Find plaintext strings

	katana.units.raw.unbinary — Convert binary to ASCII

	katana.units.raw.undecimal — Convert decimal to ASCII

	katana.units.raw.unhexlify — Convert hex to ASCII

	katana.units.raw.urldecode — Decode URLs

katana.units.raw.ascii85 — Decode Ascii85

Decode Ascii85 encoded text

This is done by the Python3 base64 module which has the
a85decode function.

	
class katana.units.raw.ascii85.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.Unit

	
GROUPS = ['raw', 'decode', 'ascii85']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “ascii85”

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a low
priority unit, because it is uncommon and highly matching.

	
evaluate(case: Any)

	Evaluate the target. Run base64.a85decode on the target and
recurse on any new found information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.raw.base32 — Decode Base32

Decode Base32 encoded text

This is done by the Python3 base64 module which has the
b32decode function.

	
class katana.units.raw.base32.Unit(*args, **kwargs)

	Bases: katana.unit.Unit

	
GROUPS = ['raw', 'decode', 'base32']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “base32”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a low
priority.

	
evaluate(case)

	Evaluate the target. Run base64.b32ecode on the target and
recurse on any new found information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.raw.base58 — Decode Base58

Decode Base58 encoded text

This is done by the Python3 base58 module which has the
b58decode function.

	
class katana.units.raw.base58.Unit(*args, **kwargs)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'base58']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “base58”.

	
PATTERN = regex.Regex(b'[a-zA-Z0-9+/]+', flags=regex.A | regex.S | regex.M | regex.V0)

	

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a low
priority.

	
evaluate(match)

	Evaluate the target. Run base58.b58decode on the target and
recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.base64 — Decode Base64

Decode Base64 encoded text

This is done by the Python3 base64 module which has the
b64decode function.

	
class katana.units.raw.base64.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'base64']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “base64”.

	
PATTERN = regex.Regex(b'[a-zA-Z0-9+/]{4,}={0,2}', flags=regex.A | regex.S | regex.M | regex.V0)

	

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority. Base64 is quick and common and matches fairly unilaterally

	
evaluate(match)

	Evaluate the target. Run base64.b64decode on the target and
recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.base85 — Decode Base85

Decode Base85 encoded text

This is done by the Python3 base64 module which has the
b85decode function.

	
class katana.units.raw.base85.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'base85']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “base85”.

	
PATTERN = regex.Regex(b'[\\x21-\\x75]{4,}', flags=regex.A | regex.S | regex.M | regex.V0)

	

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a low
priority, uncommon

	
evaluate(match)

	Evaluate the target. Run base64.b85decode on the target and
recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.exiftool — Exiftool

Extract metadata with exiftool

This unit will extract metadata file using the exiftool
command-line utility. The syntax runs as:

exiftool <target_path>

The unit inherits from katana.unit.FileUnit to ensure the target
is a file.

	
class katana.units.raw.exiftool.Unit(manager: katana.manager.Manager, target: katana.target.Target, keywords=None)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['exiftool']

	This unit needs the exiftool command-line tool to run.

	
GROUPS = ['raw', 'file', 'exiftool']

	These are “tags” for a unit. Considering it is a Raw unit, “raw” is
included, as well as the tag “file”, and the name of the unit “exiftool”.

	
PRIORITY = 40

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a
moderate-to-high priority

	
evaluate(case)

	Evaluate the target. Run exiftool on the target and
recurse on any newfound information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.raw.morsecode — Interpret Morsecode

Unit to decode Morsecode

This unit will attempt to read data from Morsecode, both in the International
sound mapping as well as the text representation with dots and dashes.

	
class katana.units.raw.morsecode.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'morsecode']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name “morsecode”.

	
PATTERN = regex.Regex(b'((((dit|dah|di)-?)+)|([.\\-]+))(((((dit|dah|di)-?)+)|([.\\-]+))){3,}', flags=regex.A | regex.S | regex.M | regex.V0)

	

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderate
priority

	
evaluate(match)

	Evaluate the target. Translate any morsecode in the target and
to its English representation and recurse on any newfound information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.qrcode — Run zbarimg

Scan QR codes

This unit works with the pyzbar module in Python, which is necessary for
it to run.

This unit inherits from the katana.unit.FileUnit to ensure
that the target is in fact an image file.

	
class katana.units.raw.qrcode.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.FileUnit

	
GROUPS = ['raw', 'decode', 'qrcode', 'scan']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, “scan”, and the unit name
“qrcode”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderate
priority.

	
evaluate(case: Any)

	Evaluate the target. Scan the target with pyzbar and
recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.strings — Find plaintext strings

Parse plaintext strings from a file with the strings command-line tool.

You can supply a minimum length of the data that strings will return
as an argument length. The syntax of the command being run is:

strings <target_path> -n <length_argument>

The unit inherits from katana.unit.FileUnit to ensure the target
is a file.

	
class katana.units.raw.strings.Unit(manager: katana.manager.Manager, target: katana.target.Target, keywords=None)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['decode']

	THis unit does not recurse to “decode” units, since they are capable of
finding their targets within a file by regular expression

	
DEPENDENCIES = ['strings']

	Required depenencies for this unit “strings”

	
GROUPS = ['raw', 'strings']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, and the name of this unit itself “strings”.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderately
high priority due to speed and broadness of applicability

	
evaluate(case: Any)

	Evaluate the target. Run strings on the target and
recurse on any newfound information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.raw.unbinary — Convert binary to ASCII

Decode data represented as binary values.

This unit will return the data represented in both little-endian notation
and in big-endian notation.

	
class katana.units.raw.unbinary.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the name of the unit itself,
“unbinary”.

	
PATTERN = regex.Regex(b'(([01]{7,8}(([01]{7,8})){3,}|[01]{32,}))', flags=regex.A | regex.V0)

	The pattern to match for binary data.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has the default
priority.

	
evaluate(match)

	Evaluate the target. Convert the binary data found within the target
and recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.undecimal — Convert decimal to ASCII

Decode data represented as decimal values.

This unit will return the data represented in both little-endian notation
and in big-endian notation.

	
class katana.units.raw.undecimal.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'undecimal']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name itself,
“undecimal”

	
PATTERN = regex.Regex(b'[0-9]+(([0-9]+))*', flags=regex.A | regex.V0)

	The pattern to match for decimal data.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has the default
priority.

	
evaluate(match)

	Evaluate the target. Convert the decimal data found within the target
and recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.unhexlify — Convert hex to ASCII

Decode data represented as hexadecimal values.

This unit will return the data represented in both little-endian notation
and in big-endian notation.

	
class katana.units.raw.unhexlify.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.RegexUnit

	
GROUPS = ['raw', 'decode', 'unhexlify']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the unit name itself,
“unhexlify”.

	
PATTERN = regex.Regex(b'[0-9a-fA-F]+(([0-9a-fA-F]+))*', flags=regex.A | regex.V0)

	The pattern to match for hexadecimal data.

	
PRIORITY = 50

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a
moderate-high unit priority.

	
evaluate(match)

	Evaluate the target. Convert the hexadecimal data found within the
target and recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.raw.urldecode — Decode URLs

Decode URL-encoded/percent-ecoded data.

This unit will return the data represented in both little-endian notation
and in big-endian notation.

This unit inherits from katana.unit.PrintableDataUnit as the targets
for this should include data that is often part of a URL.

	
katana.units.raw.urldecode.URL_DATA = regex.Regex(b'%[0-9A-Fa-f]{1,2}', flags=regex.A | regex.S | regex.I | regex.M | regex.V0)

	The pattern to match for URL encoded data.

	
class katana.units.raw.urldecode.Unit(*args, **kwargs)

	Bases: katana.unit.PrintableDataUnit

	
GROUPS = ['raw', 'decode', 'urldecode']

	These are “tags” for a unit. Considering it is a Raw unit, “raw”
is included, as well as the tag “decode”, and the name of the unit itself,
“urldecode”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority.

	
evaluate(case: Any)

	Evaluate the target. URL decode the
target and recurse on any new found information.

	Parameters

	match – A match returned by the RegexUnit.

	Returns

	None. This function should not return any data.

katana.units.stego — Steganography

These units handle procedures that are often necessary for challenges in the Steganography category of CTFs.

Note

Often times, these units can take a long amount of time and bottleneck Katana’s operations. If you know you do not need these checks, include --exclude stego in your command.

	katana.units.stego.audio_spectrogram — Extract Audio Spectrogram

	katana.units.stego.dtmf_decode — Decode DTMF Tones

	katana.units.stego.jsteg — Run jsteg

	katana.units.stego.snow — Run snow

	katana.units.stego.steghide — Run steghide

	katana.units.stego.stegsolve — Run Stegsolve

	katana.units.stego.whitespace — Check spaces/tabs for binary

	katana.units.stego.zsteg — Run zsteg

katana.units.stego.audio_spectrogram — Extract Audio Spectrogram

Create an audio spectrogram for audio files

This unit will generate a spectrogram for audio files. It relies heavily
on Python libraries such as pydub and pylab.

This unit inherits from the katana.unit.FileUnit to ensure
that the target is in fact an audio file.

	
class katana.units.stego.audio_spectrogram.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

Analyze the audio spectogram of a clip and look for visual text/images

	
GROUPS = ['audio', 'stego']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “audio”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
than normal priority for matching files

	
evaluate(case)

	Evaluate the target. Create an audio spectrogram based off of the
given audio file and add it to the results.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.stego.audio_spectrogram.get_info(wav_file: bytes) → tuple

	Get audiodata from the given the file path

katana.units.stego.dtmf_decode — Decode DTMF Tones

Unit to read values from DTMF tones.

This unit inherits from the katana.unit.FileUnit to ensure
that the target is in fact an audio file.

..note:

Currently, this unit only supports WAVE files (sorry, no MP3s).

	
class katana.units.stego.dtmf_decode.DTMFdetector

	Bases: object

This is used for the DTMF processing operations.
Admittedly, it was found online and adapted to work within Katana.

	
calc_coeffs()

	

	
check(filename)

	

	
clean_up_processing()

	

	
getDTMFfromWAV(filename)

	

	
goertzel(sample)

	

	
post_testing()

	

	
reset()

	

	
class katana.units.stego.dtmf_decode.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
GROUPS = ['audio', 'stego']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “audio”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority for matching files

	
evaluate(case)

	Evaluate the target. Attempt to retrieve the DTMF tones present in
the target sound file.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.stego.jsteg — Run jsteg

Extract hidden data with jsteg

This unit will extract hidden data file using the jsteg
command-line utility. The syntax runs as:

jsteg reveal <target_path>

The unit inherits from katana.unit.FileUnit to ensure the target
is a JPG file.

	
class katana.units.stego.jsteg.Unit(manager: katana.manager.Manager, target: katana.target.Target)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['jsteg']

	Required depenencies for this unit “jsteg”

	
GROUPS = ['stego', 'image', 'jsteg']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “image”, and the unit name itself,
“jsteg”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority for matching units

	
evaluate(case)

	Evaluate the target. Run jsteg on the target and
recurse on any newfound information.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.stego.snow — Run snow

Extract hidden data with snow

This unit will extract hidden data file using the snow
command-line utility. The syntax runs as:

snow <target_path>

You can read more about the snow tool at the homepage, here:
http://www.darkside.com.au/snow/

The unit inherits from katana.unit.FileUnit to ensure the target
is a file.

	
class katana.units.stego.snow.Unit(manager: katana.manager.Manager, target: katana.target.Target, keywords=None)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['snow']

	Required depenencies for this unit “snow”

	
GROUPS = ['stego', 'text', 'snow']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “text” and the name of unit itself,
“snow”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority for matching files

	
evaluate(case)

	Evaluate the target. Run snow on the target and
recurse on the standard output.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.stego.steghide — Run steghide

Extract hidden data with steghide

This unit will extract hidden data file using the steghide
command-line utility. First the unit will try with an empty
password, and then it will try with the user-supplied password argument.
Finally, it will bruteforce with a upplied dictionary file.
The syntax runs as:

steghide extract -sf <target_path> -p <password> -xf <steghide_directory>

The unit inherits from katana.unit.FileUnit to ensure the target
is a JPG file.

Note

steghide only works on JPG files!

	
class katana.units.stego.steghide.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['steghide']

	Required depenencies for this unit “steghide”

	
GROUPS = ['stego', 'image']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “image”.

	
PRIORITY = 20

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a high
priority for matching files

	
enumerate()

	This function will first yield an empty password, then the
supplied password argument, then loop through each line of
a provided dictionary file. The password will then be used by
the evaluate function to try and open the encrypted PDF.

	
evaluate(password)

	Evaluate the target. Extract any info with steghide and
recurse on any new found files.

	Parameters

	password – A case returned by enumerate. For this unit, password will first be an empty password, then the password supplied as an argument, then the contents of a provided dictionary file.

	Returns

	None. This function should not return any data.

katana.units.stego.stegsolve — Run Stegsolve

Reveal color planes on an image with stegsolve.

This unit is a Python implementation of stegsolve.jar, which is often
used for CTF challenges.

You can supply a channel or plane index to specifically extract, but
if these arguments are not given the unit will bruteforce and grab the least
4 bits of each color channel (R, G, B, typically).

The unit inherits from katana.unit.FileUnit to ensure the target
is an image file.

	
class katana.units.stego.stegsolve.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
BLOCKED_GROUPS = ['stego', 'forensics']

	Blocked groups…. do not recurse into forensics because running
binwalk or foremost on new images serves no real purpose

	
GROUPS = ['stego', 'image', 'stegsolve']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “image”, and the name of the unit itself,
“stegsolve”.

	
PRIORITY = 70

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a priorty
of 70.

	
RECURSE_SELF = False

	Recurssion would be silly in this case.

	
enumerate()

	This function will first yield the channel and plane that are
supplied as arguments by the end-user. If they are not supplied, by
default it will loop through all colors channels and the least 4 bits
to extract from the target. These channel and plane pairs
will be presented as a tuple, to be used by the evaluate
function.

	
evaluate(case)

	Evaluate the target. Create new images on specific color channels
and their specified bit indexes.

	Parameters

	case – A case returned by enumerate. For this unit, this will be a tuple with the channel (R, G, B) and plane (0-7) to extract.

	Returns

	None. This function should not return any data.

	
katana.units.stego.stegsolve.get_plane(img, data, channel: str, index: str = 0)

	Get a new image showcasing only one channel and index of an image.

	Parameters

	
	img – The Python PIL original image object

	data – The pixel data of the original image object

	channel – The channel to extract, as a string (e.g. “R”, “G”, “B”)

	index – The specific bit index (0-7) you want to extract

	Returns

	A new Python PIL image with only the given channel and index.

katana.units.stego.whitespace — Check spaces/tabs for binary

Extract hidden data with Whitespace steganography.

This unit will extract hidden data file treating spaces as a binary 0,
tabs as a binary 1, and vice versa.

The unit inherits from katana.unit.FileUnit to ensure the target
is a file.

	
class katana.units.stego.whitespace.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
GROUPS = ['stego', 'whitespace']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, and the name of the unit itself, “whitespace”.

	
PRIORITY = 75

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a moderate
priority.

	
evaluate(case)

	Evaluate the target. Convert anything that could potentially be
whitespace steganography and pass it to Katana.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.stego.whitespace.decode_from_whitespace(binary_sequence: str) → str

	This is a convenience function to decode a binary sequence.

	Parameters

	binary_sequence – A string of 1’s and 0’s.

	Returns

	The converted data

katana.units.stego.zsteg — Run zsteg

Extract hidden data with zsteg

This unit will extract hidden data file using the zsteg
command-line utility. The syntax runs as:

zsteg <arguments> <target_path>

This unit will use only preselected arguments to search with zsteg.
This saves processing time, and still seems to find the majority of flags.

The unit inherits from katana.unit.FileUnit to ensure the target
is a PNG file.

Note

zsteg only works with PNG files!

	
class katana.units.stego.zsteg.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['zsteg']

	Depends on the binary “zsteg”. This must be in your PATH for this unit
to run.

	
GROUPS = ['stego', 'image', 'zsteg']

	These are “tags” for a unit. Considering it is a Stego unit, “stego”
is included, as well as the tag “image”, and the name of the unit itself,
“zsteg”.

	
PRIORITY = 40

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a slightly
higher priority of 40.

	
enumerate() → Generator[Any, None, None]

	This will loop through a set of pre-defined arguments for
zsteg to run with.

	Returns

	Generator of zsteg arguments

	
evaluate(case: Any) → None

	Evaluate the target. Run zsteg on the target and
recurse on any newfound information.

	Parameters

	case – A case returned by enumerate. For this unit, the case is an argument to use for zsteg.

	Returns

	None. This function should not return any data.

	
katana.units.stego.zsteg.permutations = ['b1,rgb,lsb,xy', 'b1,r,lsb,xy', 'b1,rgb,msb,yx', 'b2,rgb,lsb,yx', 'b2,rgb,lsb,xy', 'b1,rgba,lsb,xy', 'b1,r,lsb,xy', 'b1,rgba,msb,yx', 'b2,rgba,lsb,yx', 'b2,rgba,lsb,xy', 'b1,rgb,lsb,xy']

	This is a pre-defined list of argument to use with zsteg. These options
tend to find flags hidden with the LSB steganography technique.

katana.units.tar — TAR File Processing

These units handle procedures that to work with TAR archive files.

Admittedly, this should be bundled to in a larger, “archive” unit package, but this has not yet been done.

	katana.units.tar.extract — Extract TAR archive

katana.units.tar.extract — Extract TAR archive

TAR archive extraction

This is done with the built-in Python library tarfile, so there is

Note that TAR files do not have support for passwords, so that is not
implemented here.

The unit inherits from katana.unit.FileUnit to ensure the target
is a TAR archive.

	
class katana.units.tar.extract.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
GROUPS = ['tar', 'archive']

	The constructor is included just to provide a keyword for the
FileUnit, ensuring the provided target is in fact a TAR archive.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a
moderately high priority due to speed and broadness of applicability

	
RECURSE_SELF = True

	In case we have nested TARs, we CAN recurse into ourselves.

	
evaluate(case: str)

	Evaluate the target. Extract the target with TAR and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.web — Web Application Testing

These units handle procedures that are often necessary for challenges in the Web category of CTFs.

Note

These units are by default aggressive: they will automatically perform SQL injections, attempt LFI, bruteforce web pages and more. Ensure that you have full authorization and permission to point this at a website.

Admittedly, these should be organized into a framework so that once vulnerabilities are found for a website, they can be shared with sister units and leveraged as needed. This is a large undertaking that is still not completed.

	katana.units.web.basic_img_shell — Upload PHP Shell

	katana.units.web.basic_nosqli — NoSQL Injection

	katana.units.web.basic_sqli — SQL Injection

	katana.units.web.cookies — Check Cookies

	katana.units.web.form_submit — Auto-submit Forms

	katana.units.web.git — Dump Git Repos

	katana.units.web.logon_cookies — Check Authentication Cookies

	katana.units.web.robots — Check robots.txt

	katana.units.web.spider — Spider Webpages

katana.units.web.basic_img_shell — Upload PHP Shell

Upload a basic PHP web shell to look for a flag file.

This unit will to see if there upload functionality on a webpage, and if it
finds one, it will attempt to upload a basic PHP web shell masked inside of
a GIF image. That syntax is simply:

GIF89a;
<?php system($_GET['c']) ?>

If the unit can find the new file that it uploaded, it will attempt to run
commands and look for a flag.txt or flag file on the remote server.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.basic_img_shell.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'shell', 'basic_img_shell']

	These are “tags” for a unit. Considering it is a web unit, “web”
is included, as well as the tag “shell”, and the name of the unit itself,
“basic_img_shell”.

	
PRIORITY = 60

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
lower priority.

	
RECURSE_SELF = False

	This unit should not recurse on itself.

	
enumerate()

	Yield cases. This function will actually attempt to upload
a PHP webshell with a variety of file extensions, like
["php", "gif", "php3", "php5", "php7"] and yield the proper
HTTP action, method, parameters and potentially a file location to
reach the uploaded webshell. Running commands takes place within the
evaluate function.

	Returns

	A generator, yielding a tuple with the found values (method, action, file, ext, location, file_path)

	
evaluate(case: Any)

	Evaluate the target. Use the uploaded webshell to try and run commands
and if command output is shown, find a potential flag location. If
a flag file is found, it will attempt to display that flag.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function yields the information necessary to access the newly uploaded webshell.

	Returns

	None. This function should not return any data.

katana.units.web.basic_nosqli — NoSQL Injection

Basic NoSQL Injection

This will attempt basic NoSQL injection (MongoDB) of the form
"username": {"$gt": ""}, "password": {"$gt": ""},.

It passes a User-Agent to act as a regular Firefox web browser.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.basic_nosqli.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'shell', 'basic_nosqli']

	These are “tags” for a unit. Considering it is a web unit, “web”
is included, as well as the tag “shell”, and the name of the unit itself,
“basic_nosqli”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority.

	
RECURSE_SELF = False

	This unit should not recurse on itself.

	
evaluate(case: Any)

	Evaluate the target. Attempt to perform NoSQL injection (MongoDB) on
the form found on the target web page.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.web.basic_sqli — SQL Injection

Basic SQL Injection

This will attempt basic SQL injection of the form ‘ OR 1=1 #
with varying quotes, comment techniques, and nested SQL clauses.

It passes a User-Agent to act as a regular Firefox web browser.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.basic_sqli.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'shell', 'basic_sqli']

	These are “tags” for a unit. Considering it is a web unit, “web”
is included, as well as the tag “shell”, and the name of the unit itself,
“basic_sqli”.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority.

	
RECURSE_SELF = False

	This unit should not recurse on itself.

	
enumerate()

	Yield cases. This function will attempt to generate all of the
potential payload options for basic SQL injection, between
single-quotes versus double-quotes, MySQL-style comments or
SQLite-style comments or for delimeters and even nested SQL clauses.

	Returns

	A generator, yielding a tuple with the found values (method, action, username, password, payload)

	
evaluate(case: Any)

	Evaluate the target. Attempt to perform SQL injection on
the form found on the target web page.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function will offer the HTTP method, action, username and password argument names, as well as the changing SQL injection payload to test against the remote server.

	Returns

	None. This function should not return any data.

katana.units.web.cookies — Check Cookies

View HTTP cookies

This unit will look through all of the different cookies on a website
and look for a flag.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

	
class katana.units.web.cookies.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'cookies']

	These are “tags” for a unit. Considering it is a Web unit, “web”
is included, as well as the name of the unit, “cookies”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a
moderately high priority due to speed and broadness of applicability

	
RECURSE_SELF = False

	This unit should not recurse into itself. It would not make
sense to recurse on cookies.

	
enumerate()

	Yield cases. This function will look at the cookies in the requested
page and yield each one, to be examined by the evaluate function.

	Returns

	A generator, yielding a dictionary with the cookie information (i.e, name=value dictionary).

	
evaluate(case)

	Run unit tasks given case which was returned from
Unit.enumerate. This could happen in any thread or process of
execution and should be stateless.

katana.units.web.form_submit — Auto-submit Forms

Basic HTTP form submission

This unit will attempt to submit an HTTP form with no data, if just to find
another endpoint accessible on a website.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

	
class katana.units.web.form_submit.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'form_submit']

	These are “tags” for a unit. Considering it is a Web unit, “web”
is included, as well as the name of the unit, “cookies”.

	
PRIORITY = 20

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a higher
priority.

	
RECURSE_SELF = True

	This unit should not recurse into itself.

	
evaluate(case: Any)

	Evaluate the target. Submit an HTTP form.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.web.git — Dump Git Repos

Git Dumper

This unit will detect if a /.git/ directory is found on a website.
If it is, it will pull down all the files and search for flags within
the commits and objects inside of the public facing git repository.

This process is threaded, alongside Katana already being threaded…
so your mileage may vary.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Note

This code is shamelessly ripped from https://github.com/arthaud/git-dumper

	
class katana.units.web.git.DownloadWorker(pending_tasks, tasks_done, args)

	Bases: katana.units.web.git.Worker

Part of the Git Dumper procedure.

Download a list of files

	
do_task(filepath, url, directory, retry, timeout, unit, katana)

	

	
init(url, directory, retry, timeout, unit, katana)

	

	
class katana.units.web.git.FindObjectsWorker(pending_tasks, tasks_done, args)

	Bases: katana.units.web.git.DownloadWorker

Part of the Git Dumper procedure.

Find objects.

	
do_task(obj, url, directory, retry, timeout, unit, katana)

	

	
class katana.units.web.git.FindRefsWorker(pending_tasks, tasks_done, args)

	Bases: katana.units.web.git.DownloadWorker

Part of the Git Dumper procedure.

Find refs/

	
do_task(filepath, url, directory, retry, timeout, unit, katana)

	

	
class katana.units.web.git.RecursiveDownloadWorker(pending_tasks, tasks_done, args)

	Bases: katana.units.web.git.DownloadWorker

Part of the Git Dumper procedure.

Download a directory recursively.

	
do_task(filepath, url, directory, retry, timeout, unit, katana)

	

	
class katana.units.web.git.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
BAD_MIME_TYPES = ['application/octet-stream']

	

	
GROUPS = ['web', 'git']

	These are “tags” for a unit. Considering it is a Web unit, “web”
is included, as well as the name of the unit, “git”.

	
PRIORITY = 40

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
higher priority.

	
RECURSE_SELF = False

	This unit should not recurse into itself. It would make no sense.

	
evaluate(case: Any)

	Evaluate the target. If a .git repository is found, download
it and look through all of the objects for a flag.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
class katana.units.web.git.Worker(pending_tasks, tasks_done, args)

	Bases: multiprocessing.context.Process

Part of the Git Dumper procedure.

Worker for process_tasks

	
do_task(task, *args)

	

	
init(*args)

	

	
run()

	Method to be run in sub-process; can be overridden in sub-class

	
katana.units.web.git.bad_starting_links = [b'#', b'javascript:', b'https://', b'http://', b'//']

	This is a blacklist to avoid inline JavaScript, anchors, and external links..

	
katana.units.web.git.create_intermediate_dirs(path)

	Part of the Git Dumper procedure.

Create intermediate directories, if necessary

	
katana.units.web.git.fetch_git(unit, url, directory, jobs, retry, timeout, katana)

	Dump a .git repository into the output directory.

This is the core function of the https://github.com/arthaud/git-dumper
code.

	
katana.units.web.git.get_indexed_files(response)

	Part of the Git Dumper procedure.

Return all the files in the directory index webpage.

	
katana.units.web.git.get_referenced_sha1(obj_file)

	Part of the Git Dumper procedure.

Return all the referenced SHA1 in the given object file

	
katana.units.web.git.has_a_bad_start(link)

	This is a convenience function just to avoid bad links above

	
katana.units.web.git.is_html(response)

	Return True if the response is a HTML webpage

	
katana.units.web.git.process_tasks(initial_tasks, worker, jobs, args=(), tasks_done=None)

	Part of the Git Dumper procedure.

Process tasks in parallel.

katana.units.web.logon_cookies — Check Authentication Cookies

Add or adjust cookies after fake logon.

This unit will attempt to authenticate with the credentials guest/guest
and then adjust the found cookies to claim that this user has administrator
privileges.

It passes a User-Agent to act as a regular Firefox web browser.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.logon_cookies.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'cookies', 'logon_cookies']

	These are “tags” for a unit. Considering it is a Web unit, “web”
is included, as well as the name of the unit, “logon_cookies”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has moderately
high priority due to speed and broadness of applicability

	
RECURSE_SELF = False

	This unit does not recures into itself.
It would not make sense to recurse on cookies

	
evaluate(case)

	Evaluate the target. Authenticate to the site with a bogey login and
then adjust or add cookies.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

katana.units.web.robots — Check robots.txt

Check robots.txt

This unit will look through all of the different robots.txt entries on a
webpage and look for a flag.

It passes a User-Agent to act as a Google-bot crawler.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.robots.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
GROUPS = ['web', 'robots', 'robots.txt']

	These are “tags” for a unit. Considering it is a Web unit, “web”
is included, as well as the name of the unit, “robots”.

	
PRIORITY = 30

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
higher priority.

	
RECURSE_SELF = False

	This unit should not recurse into itself. That would be silly.

	
enumerate()

	Yield cases. This function will look at robots.txt page and return
each page, to be examined by the evaluate function.

	Returns

	A generator, yielding a string for each URL in robots.txt.

	
evaluate(case)

	Evaluate the target. Reach out to every entry in the robots.txt file
and look for flags.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function will yield each URL in the robots.txt file

	Returns

	None. This function should not return any data.

	
katana.units.web.robots.headers = {'User-Agent': 'Googlebot/2.1'}

	Include these headers in the unit, to simulate action as the Googlebot
crawler.

katana.units.web.spider — Spider Webpages

Spider web pages

This unit will look through all of the different links on a website and
queue each of them as a new target, or link to explore.

This unit inherits from katana.units.web.WebUnit as that contains
lots of predefined variables that can be used throughout multiple web units.

Warning

This unit automatically attempts to perform malicious actions on the
target. DO NOT use this in any circumstances where you do not have the
authority to operate!

	
class katana.units.web.spider.Unit(*args, **kwargs)

	Bases: katana.units.web.WebUnit

	
BAD_MIME_TYPES = ['application/octet-stream']

	Avoid mime types that are downloadable files.

	
PRIORITY = 20

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a somewhat
higher priority.

	
PROTECTED_RECURSE = True

	We don’t really want to spider on EVERYTHING and start an infinite loop..
We can protect against this once we create a target object
and start to “keep track” of links we find in one specific website target

	
evaluate(case: Any)

	Evaluate the target. Look for links inside of the target web page and
reach out to each of them, queueing them as a new target.

	Parameters

	case – A case returned by enumerate. For this unit, the enumerate function is not used.

	Returns

	None. This function should not return any data.

	
katana.units.web.spider.bad_starting_links = [b'#', b'javascript:', b'https://', b'http://', b'//']

	Avoid inline JavaScript, anchors, and external links

	
katana.units.web.spider.has_a_bad_start(link)

	This is a convenience function just to avoid bad links above

katana.units.zip — ZIP File Processing

These units handle procedures that to work with ZIP archive files.

Admittedly, this should be bundled to in a larger, “archive” unit package, but this has not yet been done.

	katana.units.zip.unzip — Unzip/Crack ZIP Password

katana.units.zip.unzip — Unzip/Crack ZIP Password

ZIP file extraction

This unit attempt to extract a ZIP file. First the unit will try with an empty
password, and then it will try with the user-supplied password argument.
Finally, it will bruteforce with a upplied dictionary file.
The process is done with a dependency, using the unzip command like so:

unzip -P <password> <target_path>

The unit inherits from katana.unit.FileUnit to ensure the target
is a ZIP file.

	
class katana.units.zip.unzip.Unit(*args, **kwargs)

	Bases: katana.unit.FileUnit

	
DEPENDENCIES = ['unzip']

	This process is done with the unzip command because the Python
method bottlenecks.

	
GROUPS = ['zip', 'office', 'archive']

	These are “tags” for a unit. Considering it is a zip unit, “zip”
is included, as well as a few other key words.

	
PRIORITY = 25

	Priority works with 0 being the highest priority, and 100 being the
lowest priority. 50 is the default priorty. This unit has a
moderately high priority due to speed and broadness of applicability

	
RECURSE_SELF = True

	In can case we have nested ZIPs, we can recurse into ourselves

	
enumerate()

	This function will first yield an empty password, then the
supplied password argument, then loop through each line of
a provided dictionary file. The password will then be used by
the evaluate function to try and extract the ZIP fike.

	
evaluate(case: str)

	Evaluate the target. Extract the target with ZIP and
recurse on any new found files.

	Parameters

	case – A case returned by enumerate. For this unit, case will first be an empty password, then the password supplied as an argument, then the contents of a provided dictionary file.

	Returns

	None. This function should not return any data.

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 katana	

 	
 	
 katana.manager	

 	
 	
 katana.monitor	

 	
 	
 katana.target	

 	
 	
 katana.unit	

 	
 	
 katana.units.crypto	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_unit() (katana.target.Target method)

B

 	
 	BLOCKED_GROUPS (katana.unit.Unit attribute)

 	
 	build_target() (katana.target.Target method)

C

 	
 	can_recurse() (katana.unit.Unit method)

 	
 	check_deps() (katana.unit.Unit class method)

 	CryptoUnit (class in katana.units.crypto)

D

 	
 	DEPENDENCIES (katana.unit.Unit attribute)

E

 	
 	enumerate() (katana.unit.RegexUnit method)

 	(katana.unit.Unit method)

 	
 	evaluate() (katana.unit.Unit method)

F

 	
 	family_tree() (katana.unit.Unit method)

 	FileUnit (class in katana.unit)

 	
 	find() (katana.unit.Finder method)

 	Finder (class in katana.unit)

G

 	
 	generate_artifact() (katana.unit.Unit method)

 	get() (katana.unit.Unit method)

 	get_name() (katana.unit.NoneUnit class method)

 	(katana.unit.Unit class method)

 	
 	get_output_dir() (katana.unit.Unit method)

 	getb() (katana.unit.Unit method)

 	geti() (katana.unit.Unit method)

 	GROUPS (katana.unit.Unit attribute)

I

 	
 	is_complete() (katana.unit.Unit method)

 	
 	is_webpage (katana.target.Target attribute)

 	is_website_root (katana.target.Target attribute)

J

 	
 	JsonMonitor (class in katana.monitor)

K

 	
 	katana.manager (module)

 	katana.monitor (module)

 	
 	katana.target (module)

 	katana.unit (module)

 	katana.units.crypto (module)

L

 	
 	LoggingMonitor (class in katana.monitor)

M

 	
 	Manager (class in katana.manager)

 	match() (katana.unit.Finder method)

 	
 	MissingDependency

 	Monitor (class in katana.monitor)

N

 	
 	NO_RECURSE (katana.unit.Unit attribute)

 	NoneUnit (class in katana.unit)

 	
 	NotApplicable

 	NotEnglishAndPrintableUnit (class in katana.unit)

 	NotEnglishUnit (class in katana.unit)

O

 	
 	on_artifact() (katana.monitor.LoggingMonitor method)

 	(katana.monitor.Monitor method)

 	on_completion() (katana.monitor.JsonMonitor method)

 	(katana.monitor.Monitor method)

 	on_data() (katana.monitor.Monitor method)

 	on_depth_limit() (katana.monitor.Monitor method)

 	
 	on_download_update() (katana.monitor.Monitor method)

 	on_exception() (katana.monitor.LoggingMonitor method)

 	(katana.monitor.Monitor method)

 	on_flag() (katana.monitor.LoggingMonitor method)

 	(katana.monitor.Monitor method)

 	on_manager_exception() (katana.monitor.Monitor method)

 	on_work() (katana.monitor.Monitor method)

P

 	
 	PrintableDataUnit (class in katana.unit)

 	
 	PRIORITY (katana.unit.Unit attribute)

 	PROTECTED_RECURSE (katana.unit.Unit attribute)

R

 	
 	raw (katana.target.Target attribute)

 	RECURSE_SELF (katana.unit.Unit attribute)

 	
 	RegexUnit (class in katana.unit)

 	register() (katana.unit.Finder method)

 	rem_unit() (katana.target.Target method)

S

 	
 	stream (katana.target.Target attribute)

 	
 	STRICT_FLAGS (katana.unit.Unit attribute)

T

 	
 	Target (class in katana.target)

U

 	
 	Unit (class in katana.unit)

V

 	
 	validate() (katana.unit.Finder method)

 	(katana.unit.Unit class method)

W

 	
 	web_host (katana.target.Target attribute)

 	web_port (katana.target.Target attribute)

 	web_protocol (katana.target.Target attribute)

 	
 	web_query (katana.target.Target attribute)

 	web_uri (katana.target.Target attribute)

 	website_root (katana.target.Target attribute)

 nav.xhtml

 Table of Contents

 		
 Katana - Automatic CTF Challenge Solver

 		
 Installation Instructions

 		
 Binary Dependencies

 		
 Installing Katana

 		
 External Unit Dependencies

 		
 Getting Started

 		
 Using the REPL

 		
 Configuration

 		
 Evaluating Targets

 		
 Monitoring Directories

 		
 CTFd Integration

 		
 Converting Units

 		
 Dependency Changes

 		
 Groups

 		
 Recursion Preferences

 		
 Reporting Data

 		
 Generating and Reporting Artifacts

 		
 Module Reference

 		
 Manager - Evaluation Manager

 		
 Monitor - Target Results Callback

 		
 Unit - Abstract Challenge Solution

 		
 Target - Abstract Challenge Data

 		
 katana.units.apk — Android Packages

 		
 katana.units.apk.apktool — Decompile APK

 		
 katana.units.crack — Hash Cracking

 		
 katana.units.crack.md5 — Crack MD5 Hash

 		
 katana.units.crypto — Cryptography

 		
 katana.units.crypto.affine — Affine Cipher

 		
 katana.units.crypto.atbash — Atbash Cipher

 		
 katana.units.crypto.caesar255 — Caesar Cipher with ASCII 255

 		
 katana.units.crypto.caesar — Caesar Cipher with 26 Letters

 		
 katana.units.crypto.dna — T,A,C,G,U DNA Letters

 		
 katana.units.crypto.phonetic — NATO Phonetic Alphabet

 		
 katana.units.crypto.polybius — Polybius Square Cipher

 		
 katana.units.crypto.quipqiup — Online Substitution Cipher solver

 		
 katana.units.crypto.railfence — Railfence Cipher

 		
 katana.units.crypto.reverse — Simple Reverse

 		
 katana.units.crypto.rot47 — ROT47 Cipher

 		
 katana.units.crypto.rsa — Attempt to solve RSA

 		
 katana.units.crypto.t9 — T9 phone keypad cipher

 		
 katana.units.crypto.vigenere — Vigenere Cipher

 		
 katana.units.crypto.xor — XOR Operation

 		
 katana.units.esoteric — Esoteric Languages

 		
 katana.units.esoteric.brainfuck — Brainfuck

 		
 katana.units.esoteric.cow — COW

 		
 katana.units.esoteric.jsfuck — JSFuck

 		
 katana.units.esoteric.malbolge — Malbolge

 		
 katana.units.esoteric.ook — Ook

 		
 katana.units.esoteric.piet — Piet

 		
 katana.units.esoteric.pikalang — Pikalang

 		
 katana.units.forensics — Forensics

 		
 katana.units.forensics.binwalk — Binwalk

 		
 katana.units.forensics.foremost — Foremost

 		
 katana.units.gzip — GZIP files

 		
 katana.units.gzip.gunzip — Extract GZIP Archive

 		
 katana.units.ocr — Optical Character Recognition

 		
 katana.units.ocr.tesseract — Tesseract

 		
 katana.units.pcap — Packet Capture Processing

 		
 katana.units.pcap.tcpflow — tcpflow

 		
 katana.units.pdf — PDF File Processing

 		
 katana.units.pdf.pdf2text — pdf2text

 		
 katana.units.pdf.pdfcrack — PDFCrack - Crack Password

 		
 katana.units.pdf.pdfimages — pdfimages - Extract Images

 		
 katana.units.pdf.pdfinfo — pdfinfo

 		
 katana.units.raw — Miscellaneous general operations

 		
 katana.units.raw.ascii85 — Decode Ascii85

 		
 katana.units.raw.base32 — Decode Base32

 		
 katana.units.raw.base58 — Decode Base58

 		
 katana.units.raw.base64 — Decode Base64

 		
 katana.units.raw.base85 — Decode Base85

 		
 katana.units.raw.exiftool — Exiftool

 		
 katana.units.raw.morsecode — Interpret Morsecode

 		
 katana.units.raw.qrcode — Run zbarimg

 		
 katana.units.raw.strings — Find plaintext strings

 		
 katana.units.raw.unbinary — Convert binary to ASCII

 		
 katana.units.raw.undecimal — Convert decimal to ASCII

 		
 katana.units.raw.unhexlify — Convert hex to ASCII

 		
 katana.units.raw.urldecode — Decode URLs

 		
 katana.units.stego — Steganography

 		
 katana.units.stego.audio_spectrogram — Extract Audio Spectrogram

 		
 katana.units.stego.dtmf_decode — Decode DTMF Tones

 		
 katana.units.stego.jsteg — Run jsteg

 		
 katana.units.stego.snow — Run snow

 		
 katana.units.stego.steghide — Run steghide

 		
 katana.units.stego.stegsolve — Run Stegsolve

 		
 katana.units.stego.whitespace — Check spaces/tabs for binary

 		
 katana.units.stego.zsteg — Run zsteg

 		
 katana.units.tar — TAR File Processing

 		
 katana.units.tar.extract — Extract TAR archive

 		
 katana.units.web — Web Application Testing

 		
 katana.units.web.basic_img_shell — Upload PHP Shell

 		
 katana.units.web.basic_nosqli — NoSQL Injection

 		
 katana.units.web.basic_sqli — SQL Injection

 		
 katana.units.web.cookies — Check Cookies

 		
 katana.units.web.form_submit — Auto-submit Forms

 		
 katana.units.web.git — Dump Git Repos

 		
 katana.units.web.logon_cookies — Check Authentication Cookies

 		
 katana.units.web.robots — Check robots.txt

 		
 katana.units.web.spider — Spider Webpages

 		
 katana.units.zip — ZIP File Processing

 		
 katana.units.zip.unzip — Unzip/Crack ZIP Password

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

